
2019

DATA STRUCTURE &
ALGORITHM

(INCLUDING C)

COMPUTER SCIENCE

A Unit of ENGINEERS CAREER GROUP

Head Oĸ ce: S.C.O-121-122-123, 2nd Ň oor, Sector-34/A, Chandigarh-160022

Website: www.engineerscareergroup.in Toll Free: 1800-270-4242

E-Mail: ecgpublicaƟ ons@gmail.com | info@engineerscareergroup.in

GATE-2019: Data Structure & Algorithm (including C)| Detailed theory with
GATE previous year papers and detailed soluƟ ons.

©Copyright @2016 by ECG PublicaƟ ons
(A unit of ENGINEERS CAREER GROUP)
All rights are reserved to reproduce the copy of this book in the form storage,
introduced into a retrieval system, electronic, mechanical, photocopying,
recording, screenshot or any other form without any prior wriƩ en permission
from ECG PublicaƟ ons (A Unit of ENGINEERS CAREER GROUP).

First EdiƟ on: 2016

Price of Book: INR 420/-

ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) collected and
proving data like: theory for diī erent topics or previous year soluƟ ons very
carefully while publishing this book. If in any case inaccuracy or prinƟ ng error
may Į nd or occurred then ECG PUBLICATIONS (A Unit of ENGINEERS CAREER
GROUP) owes no responsibility. The suggesƟ ons for inaccuracies or prinƟ ng
error will always be welcome by us.

CONTENTS

SECTION-A (PROGRAMMING IN C)

CHAPTER PAGE

1. . .
 1-6

2.

 7-11

3. 12-48

SECTION-B (DATA STRUCTURE)

 CHAPTER PAGE

1. ARRAYS .
 1-9

2.

LINKED LIST .. .

 10-24

3.

STACKS

 25-39

4.

QUEUES

 40-54

5. BINARY TREES 55-79

6. AVL TREES 80-96

7. GRAPHS 97-113

8. SORTING 114-118

9. HASHING 119-127

SECTION-C (ALGORITHM)

 CHAPTER PAGE

1. ANALYSIS OF ALGORITHMS
 1-28

2.

RECURRENCE RELATION

 29-68

3.

GREEDY TECHNIQUE & DYNAMIC PROGRAMMING

 69-112

4.

COMPLEXITY CLASSES

 113-118

SECTION-A

(PROGRAMMING IN C)

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
1

CHAPTER - 1
BASICS

1.1 INTRODUCTION
C is a remarkable language. Originally designed by Dennis Ritchie, working at AT & T Bell
laboratories in New Jersey.
C is a structured language. It allows verity of programs in small modules. It is easy for debugging,
testing and maintenance if a language is a structured one.
C have a low level access to memory, simple set of keywords and clean style. Many later
languages have borrowed syntax directly or indirectly from C language. For example Java, PHP,
Java Script and many other languages are mainly based on C language. C++ is nearly a superset of
C language.

1.2 STRUCTURE OF C PROGRAM
Include header file section
Global declaration section
Main ()
{

Declaration Part
Executable Part

}
User defined functions
{
 Statements
}
Let write our first C Program (ECG.C)
include < stdio.h >
int main (void)
 {

 Return o;
 }

1. Include < Stdio.h >
All the lines starting with # are processed by preprocessor. Preprocessor is a program that is called
by complier. In another words we can say preprocessor will take input program given by
programmer and will produces output program where, there are no lines starting with #, all those
lines processed by preprocessor.
Here, # i
by preprocessor.

2. Int Main (void)
In C program, there is a fixed point from where execution of complied c program begins, i.e. main
() function int written before main () indicates return type of main () and (void) indicates that

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
11

GATE QUESTIONS

1. Consider the following C program:
#include<stdio.h>
int counter = 0;
int calc (in a, int b) {
 int c;
 counter ++;
 if (b = = 3) return (a*a*a);
 else {
 c=calc (a, b/3);
 return (c*c*c);
 }
}
int main () {
 calc (4, 81);

}
The output of this program is _______.

(GATE - 2018)
Sol. 1. (4)

2. Consider the following C program:
#include<stdio.h>
void fun 1 (char *s1, char *s2) {
 char *temp;
 tmp = S1;
 s1 = s2;
 s2 = temp;
}

void fun2 (char **s1, char**s2) {
 char *tmp;
 tmp = *s1;
 *s1 = *s2;
 *s2= tmp;
}
int main () {

str2);
 return 0;
}
The output of the program above is

(GATE - 2018)
(a) Hi Bye Bye Hi (b) Hi Bye Hi Bye
(b) Bye Hi Hi Bye (d) Bye Hi Bye Hi

Sol. 2.

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
7

 CHAPTER - 2
FUNCTIONS, ARRAYS AND POINTERS

2.1 FUNCTION
In simple terms, we can say function is simply a series of statement that have been grouped
together and given a name.
Functions are the building blocks of C programs and each function is essentially a small program

these functions.
Example.
include <stdio.h>
Int average (int a, int b)
{
 return ((a+b)/2);
}
Int Main (void)
{
 int a =2, b = 4;
int C = average (a, b);

, c); return o;
}
Here, average () is a integer function i.e. the value returned by average () is of integer type.
Average () taking a and b as input parameters (arguments) and finally returning the average value
to the main (), who supplied the arguments or who called the average ().
It is not always compulsory that a function should return something i.e. if a function have data

 return anything.
Example.
include <stdio.h>
Void print_value (int n)
{

}
Int Main (void)
{
Int i;
For (i=20; i > 0; --i)
{ Print_value (i);}
Return o;

print_value function.
In general we can define function as

Return-type function (parameter)
{

Declarations

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
11

GATE QUESTIONS

1. Consider the following C program:
#include<stdio.h>
int counter = 0;
int calc (in a, int b) {
 int c;
 counter ++;
 if (b = = 3) return (a*a*a);
 else {
 c=calc (a, b/3);
 return (c*c*c);
 }
}
int main () {
 calc (4, 81);

}
The output of this program is _______.

(GATE - 2018)
Sol. 1. (4)

2. Consider the following C program:
#include<stdio.h>
void fun 1 (char *s1, char *s2) {
 char *temp;
 tmp = S1;
 s1 = s2;
 s2 = temp;
}

void fun2 (char **s1, char**s2) {
 char *tmp;
 tmp = *s1;
 *s1 = *s2;
 *s2= tmp;
}
int main () {

str2);
 return 0;
}
The output of the program above is

(GATE - 2018)
(a) Hi Bye Bye Hi (b) Hi Bye Hi Bye
(b) Bye Hi Hi Bye (d) Bye Hi Bye Hi

Sol. 2.

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
12

 CHAPTER - 3
STRINGS, STRUCTURE AND UNION

3.1 STRINGS
Group of characters can be stored in a character array, some times also called as string.

\
\ null character i.e.

termination of sequence.
The above array declaration is similar to
Char b []
Here, GATE is a string literal, i.e. characters are enclosed between double q \
be added in the end automatically by compiler.

3.1.1. In essence, C treats string literals as character arrays. When a C complier encounters a string
literal of length n in a program, it sets aside n+1 bytes of memory for the string. i.e.

3.1.2. When C allows char*, then we can use string literals. For example
Char * p =

character.

3.2. CHARACTER ARRAY VERSUS CHARACTER POINTERS

In (1), a is an array, while in (2) b is a pointer

a alid alid

 P

3.3 STANDARD LIBRARY STRING FUNCTION

Function Use
Strlen Finds the length of string
Strcat Appends one string at the end of another
Strncat Appends first n characters of a string at the end of another
Strcpy Copies a string into another
Strncpy Copies first n characters of a string into another
Strcmp Compares two strings
Strcmpi Compare two strings regardless to case
Strrev Reverse string
Strdup Duplicate a string

G A T E \0

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
15

GATE QUESTIONS

1. Consider the C program fragment below
which is meant to divide x by y using repeated
subtractions. The variables x, y. q and r are all
unsigned int.
while (r > = y)
{
 r = r = y;
 q = q + 1;
}
Which of the following conditions on the
variable x, y, q and r before the execution of the
fragment will ensure will ensure that the loop
terminates in a state satisfying the condition x =
= (y*q +r)?

[GATE - 2017]
(a) (q = = r) && (r = = 0)
(b) (x > 0) && (r = = x) && (y > 0)
(c) (q = = 0) && (r = = x) && (y > 0)
(d) (q = = 0) && (y > 0)

2. Consider the following C Program.
#include <stdio.h>
int main ()
{
 int m = 10;
 int n, nl;
 n = ++m;
 nl = m++;
 n ;
 nl;
 n = nl;
 printf(
 return 0;
}
The output the program is _____.

[GATE - 2017]

3. Consider the following C Progarm.
#include <stdio.h>
#include <string.h>
int main()
{

 char *p = c;
 6 [p] 1));
 return 0;
}
The output of the program is ____.

[GATE - 2017]

4. Match the following.
A. static char var;
B. m = malloc (10);
 m = NULL;
C. char *ptr [10];
D. register int var1;
(i)Sequence of memory locations to store
addresses
(ii)A variable located in data section of memory
(iii)Request to allocate a CPU register to store
data
(iv)A lost memory which cannot be freed

[GATE - 2017]
(a) A-ii, B-iv, C-i, D-iii
(b) A-ii, B-I, C-iv, D-iii
(c) A-ii, B-iv, C-iii, D-i
(d) A-iii, B-iv, C-I, D-ii

5. Consider the following function
implemented in C.
void printxy (int x, int y)
{
 int *ptr;
 x = 0;
 ptr = &x;
 y = *ptr;
 *ptr = 1;

The output of invoking printxy (1, 1) is

[GATE - 2017]
(a) 0, 0 (b) 0, 1
(c) 1, 0 (d) 1, 1

6. Consider the C function foo and bar given
below.
 int foo (int val)

PROGRAMMING IN C GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
43

ASSIGNMENT

1. We require a code to print the integer
values from 0 to 9. Identify the error?
#include<stdio.h>
#include<conio.h>
Void main ()
{
 static int I,
 clrscr () ;
 for (;i<=9;) ;
 {
 Printf(
 }
 getch();
}

2. Find the output of the following code?
#include<stdio.h>
#include<conio.h>
void main ()
{
 int i;
);
 sanf (
 clrscr ();
 do
 {
 i++;
 \
 }
 while (i<4) ;
 getch () ;
}

3. Find out the error in the following code.
#include<stdio.h>
#include<conio.h>
void main()
{
 int i=1, j;
 clrscr () ;
 do
 {
 for (j=1 ;; j++)

 {
 if (j>2)
 break ;
 if (i = j)
 continue;
 \ , j) ;
 }
 i++;
 while (1<3)
 }
 getch () ;
}

4. What will be the value of I and j after

execution?
for (i=0, j=0; i<5, j<25, i++, j++) ;
printf (i=%d j=%d , i, j);

5. What is the output of the following code?
#include<stdio.h>
void main()
{
 int var = 10;
 \
}

6. What is the output of the following code?
#include<stdio.h>
main ()
{
 int var=0;
 for (;var++;printf (%d , var)) ;
 printf ("%d", var) ;
}

7. What is the output of the following code?
#include<stdio.h>
main ()
{
 int y;
 scanf (%d , &y) ;
 /* input given is 2000 */

SECTION-B

(DATA STRUCTURE)

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

1

CHAPTER - 1
ARRAYS

1.1 INTRODUCTION
1. Arrays are collection of homogeneous data.
2. Array elements are stored in successive memory locations in the memory.
3. Arrays are broadly categorized as follows
(i) One-Dimensional Array
(ii) Multi-Dimensional Array

1.1.1 One-Dimensional Array
In 1-D array, the elements are stored at consecutive locations.

10 12 14 16 18 20 22 24 26
0 1 2 3 4 5 6 7 8
Lower Bound (Indices) Upper Bound

Lower Bound (LB): Smallest index of an element in the array.
Upper Bound (UB): Largest index of an element in the array.
Length of the Array = No. of elements in the Array
Length of the Array = UB LB + 1

1.1.1.1 Address Calculation in One-Dimensional Array
Physical address of any element of array is computed as follows
General Formula
Physical address of a[i] = B.A+ (i LB of array) Size of the element

Where, B.A (Base address) = Physical address of starting element in the array

1.1.2 Two-Dimensional Array
1. It is an instance of Multi-Dimensional Array.
2. It is collection of 1D arrays.
3. Notation used to represent 2D array is array name[number of 1D arrays][number of elements in
each 1D array) or
Array name [index vector of rows][index vector of columns]
4. In Mathematics, matrices can be treated as 2D array, where numbers of rows are same as
number of 1D arrays and number of columns are same as no: of elements in each 1D array.

1.1.2.1 Graphical Representation

a00 a01 a02 a03
a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

5

GATE QUESTIONS

1. Consider the following snippet of a C
program. Assume that swap (&x, &y)
exchanges the contents of x and y.
int main ()
{
 int array [] = {3, 5, 1, 4, 6, 2};
 int done = 0;
 int i;
 while (done == 0)
 {
 done = 1;
 for (i=0; i<= 4; i++)
 {
 if (array [i] < array [i + 1])
 {
 swap (&array[i], &array [i +1]);
 done = 0;
 }

 }
 for (i=5; i>=1; i)
 {
 if (array[i] > array[i 1])
 {
 swap(&array[i], &array[i 1];
 done = 0;
 }
 }
 }

 }
The output of the program is _______.

[GATE - 2017]

2. What is the output of the following C code?
Assume that the address of x is 2000 (in
decimal) and an integer requires four bytes of
memory.
int main()
{ unsigned int x [4][3] =
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}};

}

[GATE - 2015]

(a) 2036, 2036, 2036
(b) 2012, 4, 2204
(c) 2036, 10, 10
(d) 2012, 4, 6

3. Consider the following C program segment.
include <stdio.h>
int main()
{

p = sl + 2;

}
What will be printed by the program?

[GATE - 2015]
(a) 12 (b) 120400
(c) 1204 (d) 1034

4. Consider the following C program.
include <stdio.h>
int main ()
{
static int a[] = {10, 20, 30, 40, 50};
static unit *p[] = {a, a + 3, a + 4, a + 1, a + 2};
int **ptr = p;
ptr++;

tr-p, **ptr);
}
The output of the program is ______.

 [GATE - 2015]

5. Suppose c = 1]) is an array of
length k, where all the entries are form the set
{0, 1}. For an positive integers a and n, consider
the following pseudo code.
DO so METHING (c, a, n)
z 1
for I 0 to k 1
do z z2 mod n
if c[i] = 1
then z (z a) mod n
return z

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

10

CHAPTER - 2
LINKED LIST

2.1 INTRODUCTION
1. It is collection of data elements, called nodes. Each node has its data part and pointer to
maintain the order of nodes.
2. It is used to store and remove the data dynamically as per requirement.

2.1.1 Representation of Node

Data Part Pointer

Node

2.1.2 Need of Linked List instead of Array
In array, there is wastage of memory whenever the number of stored elements are less than the
maximum size of the array. But in linked list, only required number of elements are allocated
space in the memory, extra unused space is not allocated. Maximum number of insertions can be
done in linked list until memory overflows.

 Space utilization is efficient in Linked list.

2.2 TYPES OF LINKED LIST
1. Single Linked List
2. Circular Linked List
3. Double Linked List
4. Circular Double Linked List

2.2.1 Single Linked List
1. It contains nodes having single pointer that contains address of next node in the list.
2. It can be represented as follows

NullData Pointer

Address of Next Node

3. We use structure to define a node in linked list as follows:
struct node
{
int data; // used to store the data elements of the linked list
struct node * link; // used to store the pointer of next data element in the Linked list.
};

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

22

GATE QUESTIONS

1. Consider the C code fragment given below.
Typedef struct node
{ int data;
Node * next;
} node;
Void joint (node * m , node * n)
{

While (p next ! = NULL)
{
p = p next;
}
p next = m;
}
Assuming that m and n point to valid NULL-
terminated linked lists, invocation of joint will

[GATE - 2017]
(a)Append list m to the end of list n for all
inputs.
(b)Either cause a null pointer dereference or
append list m to the end of list n.
(c)Cause a null pointer dereference for all
inputs.
(d)Append list n to the end of list m for all
inputs.

2. N items are stored in a sorted doubly linked
list. For a delete operation, a pointer is provided
to the record to be deleted. For a decrease-key
operation, a pointer is provided to the record on
which the operation is to be performed. An
algorithm performs the following operations on
the list in this

-key.
What is the time complexity of all these
operations put together?

[GATE - 2016]

(a) O(log2 N) (b) O(N)

(c) O(N2) (d 2 log N)

3. The following C function takes a single-
linked list as input argument. It modifies the list
by moving the last element to the front of the
list and returns the modified list. Some part of
the code is left blank.
typedef struct node
{
 int value;
 struct node *next;
} node;
Node *move_to-front (Node *head)
{
 Node *p, *q;

if ((head == NULL) | | (head > next = = NULL))
 return head;

 q = NULL;
 p = head;
 while (p >next ! = NULL)
 {
 q = p;
 p = q > next;
 }

 return head;
}
Choose the correct alternative to replace the
blank line.

[GATE - 2010]

(a) q = NULL; p next = head; head = p;

(b) q next = NULL; head = p; p next
= head;

(c) head = p; p next = q; q next = NULL;
(d) q next = NULL; p next = head; head
= p;

4. The following C function takes a singly
linked list of integers as a parameter and
rearranges the elements of the list. The function
is called with the list containing the integers 1,
2, 3, 4, 5, 6, 7 in the given order. What will be

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

25

CHAPTER - 3
STACKS

3.1 INTRODUCTION
1. It is linear list in which data elements are inserted and deleted at one end.
2. It uses LIFO (Last In First Out) technique to access each element.

Example. Pile of books, pile of coins.
To take the book presents at the bottom of the pile, we firstly, remove all the books above that
bottom book in order. And to add new book in the pile, it is added at the top not in the middle.
That is called LIFO technique. Similar is the case with pile of coins.

3.2 ABSTRACT DATA TYPE (ADT) OF STACK
Stack Definition contains information about accessing technique used in stack, Standard
operations and Status operations, Pointers. It has
Accessing Technique: LIFO(Last In First Out)
TOP: It is a pointer that points to recently pushed element.
Standard Operations : Pop (), Push ()
Status Operations : Isempty (), Isfull ()

3.2.1 PUSH() Operation
Let
S = Name of stack
TOP = Pointer pointing to top of the stack
N = size of stack // maximum number of elements that can be stored
x = element to be pushed
Void push(S, Top, N , x)
{
if (Top = = N 1)
{
printf (``stack is full``);
exit (1) ;
}
else
Top ++;
S[Top] = x;
}

 N-1 is the index for last element of stack, because stack starts from 0.

3.2.2 POP Operation
Pop (S, Top, N)
{
int y ;

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

36

GATE QUESTIONS

1. The attributes of three arithmetic operators in
some programming language are given below.

Operator Precedence Associativity Arity

+ High Left Binary

 Medium Right Binary

* Low Left Binary

3 in this
language is _________.

[GATE - 2016]

2. Consider the following C function.
int fun (int n){
int x=1, k;
if (n==1) return x;
for (k=1; k<n; ++k)
x = x + fun (k) * fun (n k);
return x;
}
The return value of fun (5) is ________

[GATE - 2015]

3. Consider the following recursive C function
void get (int n)
{
If (n < 1) return
get (n 1);
get (n 3);

n);
}
If get (6) function is being called in main () the
how many times will the get () function be
invoked before returning to the main ()?

[GATE - 2015]
(a) 15 (b) 25
(c) 35 (d) 45

4. Suppose depth first search is executed on the
graph below starting at some unknown vertex
that has not been visited earlier. Then the
maximum possible recursion depth (including
the initial call) is ________.

[GATE - 2014]

5. Suppose a stack implementation supports an
instruction REVERSE, which reverses the order
of elements on the stack, in addition to the
PUSH and POP instructions. Which one of the
following statements is TRUE with respect to
this modified stack?

[GATE - 2014]
(a)A queue cannot be implemented using this
stack.
(b)A queue can be implemented where
ENQUEUE takes a single instruction and
DEQUEUE takes a sequence of two
instructions.
(c)A queue can be implemented where
ENQUEUE takes a sequence of three
instructions and DEQUEUE takes a single
instruction.
(d)A queue can be implemented where both
ENQUEUE and DEQUEUE take a single
instruction each.

6. The following postfix expression with single
digit operands is evaluated using a stack
8 2 3 / 2 3 * + 5 1 *
Note that is the exponentiation operator. The
top two elements of the stack after the first* is
evaluated are

[GATE - 2007]
(a) 6, 1 (b) 5, 7
(c) 3, 2 (d) 1, 5

7. An implementation of a queue Q, using two
stacks S1 and S2, is given below
void insert (Q, x) {
 push(S1, x);
}
void delete (Q) {
 if (stack-empty(S2)) then

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

40

CHAPTER - 4
QUEUES

4.1 INTRODUCTION
It is linear list in which insertion of elements is done at the end and deletion is done at the front of
the list.
It uses FIFO (First in First Out) technique to perform any operation.

Example. People waiting in line at a bank form a queue, where the first person in line is the first
person to be waited on. New person cannot stand at any position in between queue, it will have to
stand at the end of the queue.

4.1.1 Abstract Data Type (ADT) of Queue
Definition: FIFO
1. FRONT = Pointer pointing to the element to be deleted.
2. REAR = Pointer pointing to the recently pushed element

4.1.2 Status Operations
1. PUSH ()
2. POP ()
3. Is empty ()
4. Is full ()

4.1.3 Graphical Representation of Queue
1. Enqueue
Insert an element in queue
2. Dequeue
Delete an element from the queue

1. If there is not a single element in the queue, then both the pointers point outside the queue.
2. If there is a single element in the queue, then both the pointers point at that element.

 It is not possible that one pointer is present inside the queue and other pointing
outside the queue.
Either both the pointers are present inside the queue or both will be outside the
queue.

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

55

CHAPTER - 5
BINARY TREE

5.1 INTRODUCTION
In Binary tree, each node has at most two children.

5.1.1 Depth (Height) of Binary Tree
Maximum number of nodes in the longest branch.
Depth is one more than the largest level number of tree.

5.1.2 Types of Binary Tree
1. Complete Binary Tree
2. Extended Binary Tree

5.1.2.1 Complete Binary Tree
Binary Tree is said to be complete if all its levels, except possibly that last, have maximum
number of possible nodes.
Depth(dn) of the complete tree with n nodes is

n 2d log n 1

5.1.2.2 Extended Binary Tree: 2-Tree
A Binary Tree is said to be a 2-Tree or an extended binary tree, if each node N has either 0 or 2
children. In such tree, nodes with 2 children are called internal nodes and nodes with 0 children
are called external nodes.

5.2 DEFINITION OF BINARY TREE NODE
1. data will store the information at the node.
2. lptr is the pointer to the left child of node.
3. rptr is the pointer to the right child of node.

Complete Binary Tree

Extended Binary

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

80

CHAPTER - 6
AVL TREES

6.1 INTRODUCTION
AVL trees are known as Balanced Binary Search Trees.

6.1.1 Why AVL?
Insertion of elements Z, X, Y B, A in this order results in left skewed binary search
tree.
Insertion of elements A, B, C, Y, Z in this order results in right skewed binary search
tree.
And disadvantage of a skewed binary search tree is that worst case complexity of a search is O(n).
So, to reduce the searching time, we make binary tree of balanced height. And that balanced tree is
called AVL tree.
dg

6.1.2 Balanced Factor
B.F. = Height of LST Height of RST
or
B.F= Height of RST Height of LST
Where, LST is left subtree and RST is right subtree.
A tree is considered as Balanced Tree, when balanced factor (B.F.) = 0, + 1 or 1.
If balanced factor (B.F.) is anything else except 0, + 1 or 1. Values, then it is considered as
unbalanced tree.

Example. Unbalanced binary tree
Here, at the root node, the balanced factor comes out to be + 2, it is considered as an unbalanced
tree.
(i) Balanced AVL

1

0

1

2

9

6.1.3 Searching in an AVL Search Tree
Searching an element in AVL tree is similar to binary search.

6.1.4 Insertion in an AVL Search Tree
Inserting an element into an AVL search tree in its first phase is similar to that of the one used in a
binary search tree. However, if insertion of the element disturbs the balanced factor of any node in
the tree. We use rotations technique, to restore the balance of the search tree.
To perform rotations it is necessary to identify a specific node A whose BF(A) is neither 0,1,-1,
and which is the nearest ancestor to the inserted node on the path from the inserted node to the
root.

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

96

GATE QUESTIONS

SOLUTIONS

1. B+ Trees are considered BALANCED
because

[GATE - 2016]
(a)The lengths of the paths from the root to all
leaf nodes are all equal.
(b)The lengths of the paths from the root to all
leaf nodes differ from each other by at most 1.
(c)The number of children of any two non-leaf
sibling nodes differ by at most 1.

(d)The number of records in any two leaf nodes
differ by at most 1.

2. What is the maximum height of any AVL-
tree with 7 nodes? Assume that the height of a
tree with a single node is 0.

[GATE - 2009]

(a) 2 (b) 3

(c) 4 (d) 5

Sol. 1. (a)

A Tree is balanced, if the length of the paths
from the root to all leaf nodes are all equal.

Sol. 2. (b)
Maximum height of any AVL-tree with 7

(There may be different way to draw AVL with
7 nodes)

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

97

CHAPTER - 7
GRAPHS

7.1 GRAPH
A graph has two properties
1. A set V of elements called nodes (vertices)
2. A set E of edges e in E is identified with a unique (unordered) pair [u, v] of nodes in V, denoted
by e[u, v] , where u,v are the endpoints of edge e.

7.1.1 Degree of Node
Number of edges containing that node.
In the above graph, vertex set V = {A, B, C, D, E}
Edge set E = {AB, AC, AE, BC, ED, CD, EC}
Degree of A (Degree (A)) = 3
Degree of B (Degree (B)) = 2
Degree of C (Degree (C)) = 3
Similarly we can find the degree of remaining nodes of the above graph.

7.1.2 Path
A sequence of nodes traversed to reach from one point to another.

7.1.2.1 Simple Path
A Path said to be simple if all the nodes are distinct with the exception that starting and ending
vertex are distinct.

7.1.2.2 Closed Path
A Path said to be closed if all the nodes are distinct with the exception that starting and ending
vertex are same.

7.1.3 Cycle
A cycle is a closed simple path with length 3 or more.
A cycle of length k is called k-cycle.
In the above figure 1,
Cycles: [A, B, C, E, A] and [A, C, D, E, A]
Path: (B, A, E) and (B, C, E) are simple paths of the length 2.

B

A

C

E

D

Graph (Figure 1)

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

114

CHAPTER - 8
SORTING

8.1 RADIX SORT
1. It is the technique to sort elements.
2. It uses queue data structure to implement.

8.1.1 Steps for Radix Sort
1. Select the number in the list to be sorted with maximum digits (d).
2. Make all of the numbers having maximum number of digits by adding zeroes before the
numbers, if required.
3. Arrange the numbers in the lists in the required order (increasing or decreasing) according
4. To the unit decimal place to 10(d-1)th decimal place in each pass.

Example. 101, 1,79, 97, 86, 7, 44, 99, 421, 23, 49, 12
Solution.
Maximum no. of digits = 3

 Make all of them 3-digit
101, 001, 079, 097, 086, 007, 044, 099, 421, 023, 049, 012
1st Pass (Increasing order of digit at unit place)
101, 001, 421, 012,023, 044, 086, 097, 007, 079, 099, 049
2nd
101, 001, 007, 012, 421, 023, 044,049, 079, 086, 097, 099
3rd
001, 007, 012, 023, 044, 049, 079, 086, 097, 099, 101, 421
No. of passes = 3
Time complexity = O(m, n)
m = No of passes = Maximum numbe
n= no. of elements in the list to be sorted.

 O(n)

Example. 1, 2, 86,421,361,111,6,3,94,55,814,612,522,511
Solution.
Maximum number of digits = 3

Make all of them = 3-digit

001,002,086,421,361,111,006,003,094,055,814,612,522,511
Pass-I
001,421,361,111,511,002,612,522,003,094,814,055,086,006
Pass-II
001,002,003,006,111,511,612,814,421,522,055,361,086,094
Pass-III
001,002,003,006,055,086,094,111,361,421,511,522,612,814
No. of passes = 3

8.2 BUCKET SORT
It is also a technique to sort the elements.

DATA STRUCTURE GATE-2019

ECG PUBLICATIONS
 A unit of ENGINEERS CAREER GROUP

119

CHAPTER - 9
HASHING

9.1 DIFFERENT SEARCHING TECHNIQUES AND THEIR EFFICIENCY
1. The sequential (Linear) search algorithm takes time proportional to the data size, i.e, O(n).
2. Binary search improves on linear search reducing the search time to O(logn).
3. With a BST, an O(logn) search efficiency can be obtained; but the worst-case complexity is
O(n).
4.To guarantee the O(log n) search time, BST height balancing is required (i.e., AVL trees)

9.2 HASHING
1. It is the technique to access the records in the file fastly.
2. It has goal of Time complexity O(1).
3. It uses different hashing functions, which are applied on some field of the records. That field is
called hash field.

9.2.1 Types of Hashing
1. Static Hashing
2. Dynamic Hashing

9.2.1.1 Static Hashing
1. In static hashing, the hash function maps search-key values to a fixed set of locations.
2. It uses single hash function
3. Its searching time is O(1)
4. It does not support range queries

(i) Problems of Static Hashing
1. There is fixed size of hash table due to fixed hash function
2. It may require rehashing of all keys when chains or overflow buckets are full

9.21..2 Dynamic Hashing
In dynamic hashing a hash table can grow to handle more items. The associated hash function
must change as the table grows.
1. The load factor of a hash table is the ratio of the number of keys in the table to the size of the
hash table.
2. The higher the load factor, the slower the retrieval.
3. With open addressing, the load factor cannot exceed 1. With chaining, the load factor often
exceeds 1.

9.3 APPLICATIONS OF HASH TABLES
1. Database Systems
Specifically, it is for those that require efficient random access. Generally, database systems try to
optimize between two types of access methods: sequential and random. Hash tables are an
important part of efficient random access because they provide a way to locate data in a constant
amount of time.

SECTION-C

(ALGORITHM)

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
1

CHAPTER - 1
ANALYSIS OF ALGORITHMS

1.1 INTRODUCTION
1. Algorithm is well defined sequence of computational steps that transform the input to output.
2. It can be designed to solve problems such as identifying all genes in human DNA, finding good
routes to carry data from one machine to another machine to another machine, sorting, searching
on particular data and many more.

1.2 EFFICIENCY
1. There are two valuable resources Memory and processor which are essentially required to solve
any problem. Now a day, Processor s speed is very good but they are not infinitely very fast and
memory is also available in good sizes but it is not very cheap. So, processor s speed and memory
sizes are two constraints for Algorithm efficiency. Another fact that can solve a given problem
efficiently that is designing an algorithm efficiently.
2. Efficiency of algorithm can be defined in terms of time and space. It implies time and space
taken by algorithm.
3. Time and space of given algorithm can vary on different input.
4. There are two broad categories of Analysis of algorithm
(i) Priory Analysis
(ii) Postinary Analysis.

(i) Priory Analysis
(a) It is machine independent that does not include processor s speed and memory configuration of
any system in efficiency of Algorithm.
(b) It defines the running time of an algorithm on a particular input is the number of primitive
operations.

5. Each line of pseudocode takes constant time. One line of code can take different time
(execution) than another line of code.

6. Any algorithm can have different running time on different inputs. So, each algorithm has lower
and upper bounds on their running time on particular inputs.

7. Algorithm s best performance is characterized by lower running time. It is called best case.

8. In worst case, Algorithm gives its worst performance that is upper bound on its running time.

9. Running time at all inputs except that of best and worst case, represents average case.

10. One algorithm is said to be more efficient then another if its worst case running time has a
lower order of growth.

11. Each asymptotic running time is specified defined using different asymptotic notations.

12. Asymptotic running time means the running time of an algorithm on large input sizes.

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
9

ASSIGNMENT-I

Solve using substitution method

1.

n
2T n n 1

T n 2

b n 1

2.

n
2T 2 n 2

T n 2

1 n 2

3.
2n

8T n n 2
T(n) 2

1 n 2

4.
2T(n 1) c n 1

T(n)
1 n 1

5.
T(n 1) n n 1

T(n)
1 n 1

Solve using master method

6. n
T n 2T 2

2

7. n
T n 5T n

2

8. 2n
T n 7T n

2

9. 3n
T n 27 T n

3

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
29

CHAPTER - 2
DIVIDE AND CONQUER

2.1 DIVIDE AND CONQUER
1. It is another way to design algorithms.
2. It firstly divides the problems into number of independent sub problems.
3. Then, it solves the sub problems by solving them recursively
4. It combines the sub problems solutions to give a solution to the original problem.

2.1.1 Control Abstraction of Divide and Conquer
Abstraction is used because some functions are not defined such as small, divide, solution etc.
If P is the problem, DAC works as follows
DAC (P)
{
if (small (P)) //checks whether problem is small or big
return (S(P))
else
K = divide (P) into k parts
return (combine (DAC(P1), DAC (P2), DAC (P3 k)))
}

2.2 APPLICATIONS OF DIVIDE AND CONQUER
1. Finding maximum and minimum
2. Binary search
3. Quick Sort
4. Merge Sort
5. Selection Procedure

2.2.1 Finding Maximum and Minimum
It is the problem to find maximum and minimum number among n numbers.
There are two approaches to solve this problem
1. Straight Method
2. Divide and Conquer

1. Straight Method
(i) This method finds maximum and minimum by comparing all remaining elements with first
element of the array linearly.
(ii) Its algorithm is following
straight max-min (a, n)
{
max a[1]
min a[1]
for (i = 2 to n)
if max < a[i] then
do max a[i]
else

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
68

CHAPTER - 3
GREEDY TECHNIQUE, DYNAMIC PROGRAMMING

3.1 INTRODUCTION
1. Greedy and Dynamic Techniques are other approaches to design algorithms.
2. Some algorithms are efficient if they are designed using these approaches.
3. Every problem has its Definition, Solution space, Feasible Solution space, Optimal Solution
space.

3.1.1 Problem Definition
Knowing the problem, its inputs and outputs and its conditions clearly.
1. Solution Space: All possible solutions of the problem over given input conditions
2. Feasible Solution Space: It includes solutions from the solution space which satisfies the
conditions of the problem.
3. Optimal Solution Space: It includes solutions from the feasible solutions, which satisfy the
optimal conditions of the problem.

3.2 GREEDY TECHNIQUE
1. Algorithms that use greedy technique are called greedy algorithm.
2. This technique allows to algorithm to make the choice that always looks the best choice at the
moment. It implies it makes locally optimal choice in the hope that this choice will lead to a
globally optimal solution.
3. It is used in various optimization problems.
4. But it does not yield optimal solutions for some problems.

3.2.1 Control Abstraction of Greedy Technique
a is an array of n object. Initially solution is
Greedy (a, n)
{
Solution =
For (i = 1 to n)
{
xi = select (n);
it (feasible (xi)
Add (solution, xi);
}
}

3.3 APPLICATION OF GREEDY TECHNIQUE
1. Job sequencing with deadline
2. Real knapsack (fractional knapsack)
3. Optimal merge pattern
4. Minimum cost spanning tree
5. Huffman coding
6. Single Source Shortest Path

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
112

CHAPTER - 4
COMPLEXITY CLASSES

4.1 INTRODUCTION
1. There are many problems exist in the world. Some of the problems are very easy and some are
difficult. Easy problems are also called solvable and difficult problems are those problems which
are not solvable or take more time to solve.
2. Solvable problems are called tractable problems.

4.2 ABSTRACT PROBLEM
1. It is defined as binary relation on a set I of problem instances and a set S of problem solutions.
2. Abstract decision problem is a function that maps the instance set I to the solution set {0, 1}.
For example, decision problem is related to shortest-path is the Problem path.
i = < G, u, v, k > is the instance of the shortest path problem that belongs to set I of shortest path.
If path (i) = yes, it implies there is a path from u to v has almost k edges. Otherwise path (i) = No.

4.3 ENCODING PART
1. It is a mapping of abstract objects from a set to the set of binary strings such as set N = {0, 1, 2,

 e (3) = 11.
2. Similarly are abstract objects such as polygons, graphs, functions, ordered pairs, programs can
be encoded as binary strings.
3. Encoding also exists in shortest part abstract decision problem where every instance from set S
can be encoded
4. It transforms abstract problem to concrete problem.
5. The computer algorithm that solves abstract decision problem actually takes on encoding of a
problem instance as input.
6. Concrete problem has input instances as binary strings.
7. Polynomial-time solvability of a problem also depends upon encoding but it is assumed that it is
independent of encoding procedure.
8. Theory of computation discipline allows us to express the relation between decision problems
and algorithms that solve them concisely.
9. If there is an abstract decision problem with instance set I, its encoding set e(I) and solution set
S = {0, 1}. Then, if an algorithm/machine model accepts a string x e(I) if I given as input then
language (L) of machine/Algorithm will be L ={ x e (I): S(x) = 1 }. So, it includes all accepted
strings but it rejects x e (I) and S(x) = 0
10. Language L/problems is said to be decidable if every binary string in L is accepted by
machine/algorithm and every binary string into in L is rejected by the machine/algorithm.
Therefore, all Turing machine problems/languages are decidable.
11. A language L is said to be decided in polynomial time, if there is an algorithm for which a
constant k exist and for strings of any-length n x {0, 1}*, the algorithm correctly decides
whether x L in time O (nk).
12. Turing machine languages are decided in finite amount of time. It also implies that they are
decidable

13. Some algorithm/machine accepts all x L, but loop forever. If x L . These languages are
called recursive enumerable.

 ALGORITHM GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
116

GATE QUESTIONS

1. Consider two decision problems Q1, Q2 such
that Q1 reduces in polynomial time to 3-SAT
and 3-SAT reduces in polynomial time to Q2.

Then which one of the following is consistent
with the above statement?

 [GATE - 2015]

(a) Q1 is in NP, Q2 is NP hard.
(b) Q2 is in NP, Q1 is NP hard.
(c) Both Q1 and Q2 are in NP.
(d) Both Q1 and Q2 are NP hard.

2. Consider the following statements.
I. The complement of every Turing decidable
language is Turing decidable
II. There exists some language which is in NP
but is not Turing decidable
III. If L is a language in NP, L is Turing
decidable
Which of the above statements is/are true?

 [GATE - 2015]
(a) Only II (b) Only III
(c) Only I and II (d) Only I and III

3. Language L1 is polynomial time reducible to
language L2. Language L3 is polynomial time
reducible to L2, which in turn is polynomial
time reducible to language L4.
Which of the following is/are true?
I. If L4 P, L2 P
II. If L1 P or L3 P, then L2 P
III. L1 P, if and only if L3 P
IV. If L4 P, then L1 P and L3 P

[GATE - 2015]
(a) II only (b) III only
(c) I and IV only (d) I only

4. Let A be a problem that belongs to the class
NP. Then which one of the following is TRUE?

[GATE - 2009]
(a) There is no polynomial time algorithm for

A
(b) If A can be solved deterministically in
polynomial time, then P = NP
(c) If A is NP hard, then it is NP-complete
(d) A may be undecidable

5. The subset sum problem is defined as follows:
Given a set S of n positive integers and a
positive integer W; determine whether there is a
subset of S whose elements sum to W.
An algorithm Q solves this problem in O(nW)
time. Which of the following statements is
false?

[GATE - 2007]
(a) Q solves the subset sum problem in
polynomial time when the input is encoded in
unary
(b) Q solves the subset sum problem in
polynomial time when the input is encoded in
binary
(c) The subset sum problem belongs to the class
NP
(d) The subset sum problem is NP-hard

6. Let S be an NP-complete problem Q and R be
two other problems which are known to be in
NP. Q is polynomial-time reducible to S and S
is polynomial-time reducible to R. Which one of
the following statements is true?

[GATE - 2006]
(a) R is NP-complete (b) R is NP-hard
(c) Q is NP-complete (d) Q is NP-hard

2019

THEORY OF
COMPUTATION &

COMPILER DESIGN

COMPUTER SCIENCE

A Unit of ENGINEERS CAREER GROUP

Head Oĸ ce: S.C.O-121-122-123, 2nd Floor, Sector-34/A, Chandigarh-160022

Website: www.engineerscareergroup.in Toll Free: 1800-270-4242

E-Mail: ecgpublicaƟ ons@gmail.com | info@engineerscareergroup.in

GATE-2019: Theory of ComputaƟ on & Compiler Design| Detailed theory with
GATE previous year papers and detailed soluƟ ons.

©Copyright @2016 by ECG PublicaƟ ons
(A unit of ENGINEERS CAREER GROUP)
All rights are reserved to reproduce the copy of this book in the form storage,
introduced into a retrieval system, electronic, mechanical, photocopying,
recording, screenshot or any other form without any prior wriƩ en permission
from ECG PublicaƟ ons (A Unit of ENGINEERS CAREER GROUP).

First EdiƟ on: 2016

Price of Book: INR 300/-

ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) collected and proving
data like: theory for diī erent topics or previous year soluƟ ons very carefully
while publishing this book. If in any case inaccuracy or prinƟ ng error may Į nd or
occurred then ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) owes
no responsibility. The suggesƟ ons for inaccuracies or prinƟ ng error will always be
welcome by us.

 CONTENTS

SECTION-A (THEORY OF COMPUTATION)

 CHAPTER PAGE

1. FINITE AUTOMATA
 1-44

2.

GRAMMARS, CONTEXT FREE LANGUANGES

 45- 78

3.

TURING MACHINE

 79-91

4.

DECIDABILITY AND UNDECIDABILITY..

 92-107

5. P, NP, NP-HARDAND NP COMPLETE PROBLEMS . 108-117

SECTION-B (COMPILER DESIGN)

 CHAPTER PAGE

1.
 1-13

2.

SYNTAX

 14- 52

3.

 53-63

4.

 64-71

5. 72-82

SECTION - A
THEORY OF COMPUTATION

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
1

 CHAPTER - 1
FINITE AUTOMATA

1.1 INTRODUCTION
1. Theory of computation is a model of digital computer which does not consider platform
dependent aspects of the computer.
2. It is a model or Pseudo code to understand computation.
3. Each automaton has the following characteristics:
(i) Input (ii) Output
(iii) States (iv) States relation
(v) Output relation
(i) Input: It is the set of possible inputs that can be applied on input side of model of automaton.
(ii) Output: It is the set of possible outputs of automaton.
(iii) States: It is set of possible states in which an automaton can be at any instant.
(iv) State Relation: It defines how different states are achieved, which is determined by present
inputs and present states.
(v) Output Relation: The output is related to either state only or both the input and the state.
An automaton can be modeled as

Input String
Automation

Output String

1.2 BASIC DEFINITIONS
1. Alphabet
Any finite non- empty set of symbols, denoted by sigma()
Example. = {a,b}

2. String
Any finite sequence of symbols over the given alphabet, denoted by (w)
Example. Let = {0, 1}

3. Length of string (|w|)
It is defined as number of symbols in the string
Example.
(i) w =0 ,|w| = 1 (ii) w=1 , |w| =1 (iii) w = , |w| =0

4. Prefix of String
It is defined as sequence of leading symbols over the given string.
Example. Let w =TOC then prefix of strings are T, TO, TOC, .

5. Suffix of String
It is defined as sequence of trailing symbols over the given strings.
Example. Let w = TOC then suffixes of a string are C, OC, TOC , .

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
24

ASSIGNMENT

1. Consider the regular expression

finite automation that recognizes the language
by this regular expression contains:
(a) n states
(b) n + 1 states
(c) n + 2 states
(d) None of the above

2. Let = {0, 1}, L = * and R =
2n{0 } such

that n > 0} then language L R and R are
respectively
(a) Regular, regular
(b) Non-regular, regular
(c) Regular, non- regular
(d) Non- regular, non- regular

3. The string 1101 does not belong to the set
represented by
(a) 110* (0 + 1)
(b) 1 (0 + 1)* 101
(c) (10)* (01)* (00 + 11)*
(d) (00 + (11)* 01)*

4. Let L be the set of all binary strings whose
last two symbols are the same. The number of
states in the minimum state deterministic finite-
state automation accepting L is
(a) 2 (b) 5
(c) 8 (d) 3

5. Which of the following is false?
(a) The languages accepted by FAs are regular
languages
(b) Every DFA is an NFA
(c) There are some NFAs for which no DFA can
be constructed
(d) If L is accepted by an NFA with transition
then L is accepted by an NFA without
transition.

6. How many minimum number of states are
required in the DFA (over the alphabet {a, b})

s
s divisible by 5?

(a) 20 (b) 9
(c) 7 (d) 15

7. How many states does the DFA constructed
for the set of all s
(a) 2 (b) 3
(c) 4 (d) 5

8. How many minimum number of states will
be there in the DFA accepting all strings (over
the alphabet {a, b}) that do not contain two

(a) 2 (b) 3
(c) 4 (d) 5

9. The FSM shown in the figure accepts

(a) All strings (b) No strings
(c) -alone (d) None of these

10. Consider the following transition table of FA

 a b
 state q1 q0

 q0 q1
 q0

 q1 q2
 q1

 q2 q3 q2
 q3 q4 q3

 q4 q4 q4

What is true for the given FA?
(a) Accepts strings containing even number of

(b) Does not accept strings containing
(c) Accepts strings
(d) Both (a) and (b)

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
32

GATE QUESTIONS

1. Consider the language L given by the regular
expression (a+b)*b(a+b) over the alphabet {a,
b}.The smallest number of states needed in a
deterministic finite state automation (DFA)
accepting L is _____.

[GATE - 2017]

2. Let denote the transition function and
denote the extended transition function of the -
NFA whose transition table is given below

 a b
 q0 {q2} {q1} {q0}

q1 {q2} {q2} {q3}
q2 {q0}
q3 {q2}

Then (a2, aba) is
[GATE - 2017]

(a) (b) {q0, q1, q3}
(c) {q0, q1, q2} (d) {q0, q2, q3}

3. The minimum possible number of states of a
deterministic finite automation that accepts the
regular language L = {w1aw2|w1, w2 {a,
b}*,|w1|= 2 |w2| 3} is ______

[GATE - 2017]

4. Consider the following two statements:
I. If all states of an NFA are accepting states

*.
II. There exist a regular language A such that

 Which one
of the following is CORRECT?

[GATE - 2016]
(a) Only I is true
(b) Only II is true
(c) Both I and II are true
(d) Both I and II are false

5. The number of states in the minimum sized
DFA that accepts the language defined by the
regular expression (0+1) (0+1)(0+1) is ______.
 [GATE - 2016]

6. Which one of the following regular
expressions represents the language: the set of
all binary strings having two consecutive 0s and
two consecutive 1s?

[GATE - 2016]
(a) (0+1) 0011(0+1) +(0+1) 1100(0+1)
(b) (0+1) (00(0+1) 11+11(0+1) 00)(0+1)
(c) (0+1) 00(0+1) +(0+1) 11(0+1)
(d) 00(0+1) 11+11(0+1) 00

7. Consider the DFAs M and N given above.
The number of states in a minimal DFA that

a

a
b

a

M: N:

a

a

b

b

 [GATE - 2015]

8. Let T be the language represented by the

What is the minimum number of states in a
DFA that recognizes L (complement of L)?

[GATE - 2015]
(a) 4 (b) 5
(c) 6 (d) 8

9. Consider the finite automation in the
following figure.

q0 q1 q3

10,1

q2
1 0,1 0,1

What is the set of reachable states for the input
string 0011?

[GATE - 2014]
(a) 0 1 2{q ,q ,q } (b) 0 1{q ,q }

(c) 0 1 2 3{q ,q ,q ,q } (d) 3{q }

10. Which of the regular expression given below
represent the following DFA?

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
45

CHAPTER - 2
GRAMMARS, CONTEXT- FREE LANGUAGES

2.1 INTRODUCTION
1. Every language (such as English, French) has its corresponding grammar.
2. Grammar contains/describes the set of rules for the language.
3. It is useful for making translation easier using computer from one language to another.
4. A grammar can be described in mathematical way.
5. Firstly in 1956, Noam Chomsky gave a mathematical model of a grammar which is useful for
computer languages.
6. Context free grammar definition was being used in Backus Naur form to describe ALGOL
language.
7. Context-free languages are generated from context-free grammars (type-2).
8. They are applied in parser design.
9. They are also useful for describing block structure in programming languages.
10. These languages are accepted by Pushdown down Automata.

2.2 GRAMMAR
1. It defines the set of rules for a language.
2. It is defined by five tuples (VN, , P, S)
VN is a finite nonempty set whose elements are called variables. Anything which can be
substituted further (in upper case) is called variables/non-terminal

 is a finite non empty set whose elements are called terminals. Anything which cannot be
substituted is called terminal/symbol.
VN =
S is a special variable from VN called the start symbol

P is finite set having elements of form where , are string belong to NV

have at least one symbol from VN. Its elements are called productions /production rules/rewriting
rules.

Example.
G = (VN, , P, S) is a grammar where
VN = {<sentence>, <noun>, <verb> <adverb>}

 = {Ram, somi, food, eat, dances, well}
S = <sentence>
and P contains following productions
< sentence > <noun> <verb>
<sentence> <noun> <verb> <adverb>
<noun> Ram
<noun> Somi
<verb> eat
<verb> dances
<adverb> well

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
62

ASSIGNMENT

1. If G = {{S}, {a}, S, {S SS}} find the
language generated by G.
(a) L(G) = a*
(b) L(G) = a+
(c) L(G) =
(d) Both (a) and (b)

2. Which of the following languages are context
free?
L1 = {am bm cn | m 1 and n 1}
L2 = {am bm cn | n m}
L3 = {am bm cm | m 1}
(a) Only L1 (b) L1 and L2
(c) Only L2 (d) L3

3. Which of the following definitions below
generate the same languages as L={xn yn|n 1}
(i) E xEy|xy
(ii) xy|(x+ xyy+)
(iii) x+ y+
(a) (i) only (b) (i) and (ii)
(c) (ii) and (iii) (d) (ii) only

4. If G is a context Free grammar and w is a
string of length n in L(G), how long is
derivation of w in G, if G is in Chomsky normal
form?
(a) 2n (b) 2n + 1
(c) 2n 1 (d) n

5. Which of the following is true?
(a) If language is context Free it can always be
accepted by deterministic push-down automata
(b)The union of two context Free language is
context Free
(c)The intersection of two context Free
language is context Free
(d)The complement of context-Free language is
context Free language.

6. The grammar S aaSbb|ab can generate the
set
(a) {a2n+1 b2n+1

(b) {an bn
(c) {a2n+1 b2n+1
(d) {a2n 1 b2n 1

7. The language am bn cm+n |m, n 1} is
(a) Regular
(b) Context free but not regular
(c) Context sensitive but not context free
(d) Type-0 but not context sensitive.

8. Consider the grammar G:
S AB
A aAA|
B bBB|
If G1 is constructed from G after eliminating the
null productions, then G1 is given by
(a) S AB, A aAA|aA|a, B bBB|b
(b) S AB|A|B| , A aAA|aA|a,
B bBB|bB|b
(c) S AB|A|B, A aAA|aA, B bBB|bB
(d) S AB, A aAA|aA, B bBB|bB

9. A grammar that is both left and right
recursive for a non-terminal, is
(a) Ambiguous
(b) Unambiguous
(c) Information is not sufficient to decide
(d) None of these

10. Any string of terminals that can be
generated by the following CFG satisfies which
of the given choices?
S XY, X aX|bX|a, Y Ya|Yb|a
(a)
(b)
(c) Has atleast one b
(d) None of these

11. Consider the language
L1 = {an bm cn dm | n 1, m 1 and
L2 = {an bm cm dn | m 1}
(a) Both L1 and L2 are context free
(b) L1 is not context free but L2 is context free

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
70

GATE QUESTIONS

1. Consider the following languages over the
alphabet = {a, b, c}
Let L1 = {anbncm|m , n 0} and L2 = {ambncn|m,
n 0}
Which of the following are context free
languages ?
I. L1 L2
II. L1 L2

[GATE - 2017]
(a) I only (b) II only
(c) I and II (d) neither I nor II

2. Consider the context free grammar over the
alphabet {a, b,c} given below .S and T are non-
terminals
G1 :S aSb|T, T cT|
G2 : S bSa|T, T cT|
The language L(G1) L(G2) is

[GATE - 2017]
(a) Finite
(b) Not finite but regular
(c) Context free but not regular
(d) Recursive but not context free

3. Consider the following grammar :
Stmt if expr then expr else expr; stmt |o
Expr term relop term |term
term id | number
id a|b|c
number [0-9]
where relop is a relational operator (e.g., <,

then , else are terminals.
Consider a program P following the above
grammar containing ten if terminals .The
number of control paths in P is _____.
For example, the program If e1 then e2 else e3
has 2 control flow baths, e1 e2 and e1 e3

[GATE - 2017]

4. If G is a grammar with productions
S SaS |aSb |bSa|SS|

Where S is the start variable , then which one of
the following strings is not generated by G ?

[GATE - 2017]
(a) abab (b) aaab
(c) abbaa (d) babba

5. Consider the following context-free
grammar over the alphabet = {a, b, c} with S
as the start symbol:
S abScT|abcT
T bT |b
Which one of the following represents the
language generated by the above grammar?

[GATE - 2017]
(a) {(ab)n(cb)n- | n 1}
(b) {(ab) 1 2 nm m m

1 2 ncb cb ..cb | n, m , m ,.......m 1}

(c) {(ab)n(cbm)n | m ,n 1}
(d) {(ab)n(cbn)m | m ,n 1}

6. Identify the language generated by the
following grammar , where S is the start
variable
S XY
X aX |a
Y aYb|

[GATE - 2017]
(a) {ambn|m n, n > 0}
(b) {ambn|m n, n 0}
(c) {ambn|m>n, n 0}
(d) {ambn|m>n, n > 0}

7. Let L1, L2 be any two context free
languages and R be any regular language .Then
which of the following is /are CORRECT?

[GATE - 2017]
I. L1 L2 is context free
II. 1L is context free

III. L1 R is context -free
IV. L1 L2 is context- free
(a) I, II and IV only (b) I and III only
(c) II and IV only (d) I only

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
79

CHAPTER - 3
TURING MACHINE

3.1 INTRODUCTION
1. Turing machine is an automaton that fulfills two objective: Reorganization and computation.
2. It is generalization of pushdown automata that has tape of infinite length with head able to
move in both directions or remain in the same position.

3.2 TURING MACHINE(TM)
It is an automation with the following properties:
1. Tape
It initially contains an input string. It can be potentially infinite on both sides, but the number of
symbols written at any time on the tape is always finite.

2. Read - write Head
After reading the symbols on the tape and overwriting it with another symbol (which can be the
same), the head moves to the next character, either on the left or on the right.

3. Finite Controller
It specifies the behavior of the machine for each state of the automaton and each symbol read from
the tape, what symbol to write on the tape and which direction to move next.

4. Halting State
In addition to moving left or right, the machine may also halt. In this case, the turing machine is
usually said to accept the input. Turing machine has only one halting (accepting state H.)

b ba aac cc

H

O

2

1 Can move either way

 Model of Turing Machine

In this model , 0, 1, 2 are states of Turing machines and H is Halting State.
(i) Mathematically; Turing Machine can be described using 7 tuples(Q, , ,. , q0, , F) where
(ii) Q is the set of states, not including the halt state.
(iii) is the input alphabet that is subset of tape alphabet not including the blank symbol .
(iv) is a finite set of symbols called the tape alphabet, where .
(v) is the transition function which is defined as Q {L, R}. is written as(Present state,
Input symbol) = (Next state, output symbol to replace input symbol, Direction of Head) For
example (q, a) = (q2, b, D).
(vi) q0 is initial state.
(vii) F Q is the set of final states.

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
86

ASSIGNMENT

1. Which of the following properties of r.e.
(recursive enumerable) set (1) is/are r.e.
(recursive enumerable)?
(i) L =
(ii) L contains atleast 5 members
(iii)L has exactly one member.
Here, Assume L as a R.E (recursive
enumerable)
(a) (i) (b) (i) and (ii)
(c) (i),(ii) and (iii) (d) (ii) and(iii) only

2. We say that an algorithm exists for a
particular problem when the language for the
problem is:
(a) Context free
(b) Context sensitive
(c) Recursive
(d) Recursively enumerable

3. Which of the following is more powerful
than single tape TM?
(a) Multi-tape TM
(b) TM with multiple tracks
(c) Non deterministic TM
(d) None of these

4. Consider the Turing Machine M;
M = (Q, , , , q0, B, F) and is defined by
(q0, a) = (q1, a, R)
(q1, b) = (q2, b, R)
(q2 a) = (q2 a, R)
(q2, b) = (q3, b, R)

q3 is the final state.
The language accepted by Turing machine is,
(a) aba* (b) aba ab
(c) aba b (d) a ba

5. Consider the Turing machine M defined by
M=(Q, , , , q0, B, F); And is defined by
(q0, a) = (q1, a, R)
(q0, b) = (q1, b, R)
(q0, B) = (q1, B,R)
(q1,a) = (q0, a, L)

(q1, b) = (q0, b, L)
(q1, B) = (q0, B, L)

On input ab machine will
(a) Halt in accepting state
(b) Will go into infinite loop
(c) Crash
(d) None of these

6. Let X be defined as follows:
X: Given (M), an encoding of a Turing
machine. Does M halt on all inputs. Which of
the following is true?
(a) X is decidable
(b) X is un-decidable but partially decidable
(c) X is un-decidable and not even partially
decidable
(d) X is not a decidable problem

7. Which of the following is false?
(a) PCP is undecidable
(b) For a CFG, G it is undecidable whether L(G)
is regular
(c) For two CFGs, G1 and G2,L(G1) L(G2) is
un-decidable
(d) Given an r.e. set L, it is partially decidable
whether L is regular

8. Consider the following statements:
S1: Whether given turing machine accept empty
language is undecidable
S2: The complement of recursive language is
recursive enumerable.
Which of the above statement is false?
(a) S1 only (b) S2 only
(c) Both S1 and S2 (d) None of these

9. Which of the following has a read only tape?
(a) Multi-Tape TM
(b) Offline TM
(c) Multi-track TM
(d) None of these

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
88

GATE QUESTIONS

1. Let A and B be finite alphabets and let # be a
symbol outside both A and B .Let f be a total
function from A* to B* .We say f is computable
if there exists a Turing Machine M which given
an input x in A *, always halts with f(x) on its
tape. Let Lf denote the language {x# f(x)|x A*}
Which of the following statements is true?

[GATE - 2017]
(a)f is computable if and only if Lf is recursive
(b)f is computable if and only if Lf is
recursively enumerable

f is recursive, but
not conversely
(d)If f is computable then Lf is recursively,
enumerable, but not conversely

2. Consider the following languages
L1 = {ap|p is a prime number}
L2{anbmc2m|n 0, m 0}
L3 = {anbnc2n|n 0
L4 = {anbn | n 1}
Which of the following are Correct?
I. L1 is context free but not regular
II. L2 is not context free.
III. L3 is not context free but recursive
IV. L4 is deterministic context free

[GATE - 2017]
(a) I, II and IV only (b) II and III only
(c) I and IV only (d) III and IV only

3. Let L(R) be the language represented by
regular expression R.L:t L(G) be the language
generated by a context free grammar G. let (M)
be the language accepted by a Turing Machine
M. Which of the following decision problems
are undecidable?
I. Given a regular expression R and a string w ,
is w L(R) ?
II. Given a context free grammar G, is L(G) =

?
III. Given a context free grammar G is L(G)
= * for some alphabet ?

IV .Given a Turing machine M and a string w ,
is w L (M) ?

[GATE - 2017]
(a) I and IV only (b) II and III only
(c) II, III and IV only (d) III and IV only

4. Consider the following languages.
L1 = {<M> | M takes at least 2016 steps on
some input},
L2 = {<M> | M takes at least 2016 steps on all
inputs}and
L3
Where for each Turing machine M, <M>
denotes a specific encoding of M.
Which one of the following is TRUE?

[GATE - 2016]
(a) L1 is recursive and L2, L3 are not recursive
(b) L2 is recursive and L1, L3 are not recursive
(c) L1, L2 are recursive and L3 is not recursive
(d) L1, L2, L3 are recursive

5. L1 is a recursively enumerable language over

. An algorithm A effectively enumerates its
words as w1, w2, w3

language L2 over {#} as {wi # wj : wi , wj
L1, i < j}. Here # is a new symbol. Consider the
following assertions.
S1: L1 is recursive implies L2 is recursive
S2 : L2 is recursive implies L1 is recursive
Which of the following statements is true?

 [GATE - 2004]
(a) Both S1 and S2 are true
(b) S1 is true but S2 is not necessarily true
(c) S2 is true but S1 is not necessarily true
(d) Neither is necessarily true

6. Define languages L0 and L1 as follows
L0 = {<M, w, 0> | M halts on w}
L1 = {<M, w, 1> | M does not halts on w}
Here <M, w, i> is a triplet, whose first
component. M is an encoding of a Turing
Machine, second component, w, is a string, and
third component, t, is a bit.

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
92

CHAPTER - 4
 DECIDABILITY AND UNDECIDABILITY

4.1 INTRODUCTION
1. Decision Problem is problem that gives answer or output in terms of Yes or No.
2. Decision problem that gives answer in terms of Yes or No based on any algorithm is called
decidable.
3. Decision Problems which can have answer Yes for some time or no for sometimes are called
undecidable
4. A Problem is said to be decidable if its language is recursive or it has solution or answer or
Algorithm.

4.2 DECISION PROBLEM ABOUT REGULAR LANGUAGES
Some decidable Problems for finite state automaton, Regular grammar and regular languages
1. Does FA accept language?
2. Is the power of NFA and DFA same?
3. L1 and L2 are two regular languages. Are they closed under the following :
(i) Concatenation (ii) Intersection
(iii) Complement (iv) Transpose
(v) Kleen closure (positive transitive closure)
4. For given FA M and string w over alphabet , is w L(M)?
5. For a given FA M is L(M) = ?
6. For a given FA M and alphabet , is L(M) = ?
7. For a given FA M1, and M2, L(M1), L(M2) is L(M1) = L(M2)?
8. For given two regular languages L1, L2 over some alphabet is L1 L2?

4.3 DECISION PROBLEMS ABOUT CFLS AND CFGS

4.3.1 Some of the Decidable Problems
1. If L1 and L2 are two CFLs over some alphabets then L1 L2 is CFL.
2. If L1 and L2 are two CFLs over alphabet , then L1L2 is CFL.
3. If L is a CFL over some alphabet , then L is a CFL.
4. If L1 is a regular language, L2 is a CFL over some alphabet , then L1 L2 is CFL.
5. If L1 is a regular language, L2 is a CFL over some alphabet then L1 L2 is CFL.
6. For a given CFG G is L(G) = or not?
7. For a given CFG G, finding whether L(G) is finite or not, is decidable?
8. For given CFG G and a string w over checking whether w L(G) or not is decidable.

4.3.2 Some of the Undecidable Problems about CFGs and CFLs
1. For two given CFLs L1 and L2, whether L1 L2 is CFL or not, is undecidable.
2. For a given CFL L over some alphabets whether complement of L is CFL or not, is
undecidable.
3. For a given CFG G is ambiguous
4. For two arbitrary CFGs G1 and G2 deciding L(G1) L(G2) =
5. For two arbitrary CFGs G1 and G2, L(G1) L(G2)

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
94

ASSIGNMENT

1. Let L * where ={m,n}, then which of
the following is false?
(a)L = {mcnd
(b)L = {x| There are more m than n} is not
regular
(c) L = {mana
(d)

2. Let = {a, b}, L = and R = {anbn such that
n > 0}.Then the languages LUR and R are
respectively,
(a) Regular, Regular
(b) Not regular, Regular
(c) Regular, not Regular
(d) Not regular, Not regular

3. Consider the following languages:

(i) 2n0 | n 1

(ii) m n m n0 1 0 | m 1 and n 1

Which of the above languages is/are regular?
(a) None (b) (i) only
(c) (ii) only (d) Both

4. Consider the following languages:
(i) {0n|n is a prime}
(ii) The set of all strings that do not have 3

Which of the above languages is/are regular
sets?
(a) None (b) (i) only
(c) (ii) only (d) Both

5. Which of the following is false?
(a)Regular sets are closed under
complementation
(b)Regular sets are closed under intersection
(c)Regular sets are closed under reversal
(d)None of these

6. Which of the following is false?
(i) Regular sets are closed under substitution

(ii)Regular sets are closed under
homomorphism
(iii)Regular sets are closed under inverse
homomorphism
(iv)Regular sets are closed under quotient with
non-regular sets
(a) (iv) only
(b) (iii) & (iv) only
(c) (iii) only
(d) None of these

7. Which of the following languages is/are
regular?
(i){a2, a5, a8
(ii){0n1m|gcd(m,n)=1}
(iii){anbm m}
(a) (i) & (iii) (b) (ii) & (iii)
(c) (i) only (d)None of these

8. Consider the following statements:
(i) Every subset of a regular language is regular
(ii) Every regular language has a regular proper
subset
Choose the correct option
(a) Both (i) and (ii) are true
(b) (i) is true, (ii) is false
(c) (ii) is true, (i) is false
(d) Both are false

9. Consider the following language
(i) L1 = L where L is any subset of where
= {0}
(ii) L2 = {a2a1a4a3a6a5 2na2n-1|a1a2a3 2n,a2n
is in L, L is regular
Which of the following is ture?
(a) Both L1 and L2 are regular
(b) Only L1 is regular
(c) Only L2 is regular
(d) None of them are regular

10. Which of the following problems is
undecidable?

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
98

GATE QUESTIONS

1. Which of the following decision problems
are undecidable?
I. Given NFAs N1 and N2, is L(N1) L(N2) =

II. Given a CFG G = (N, , P, S) and a string x
 *, does x L(G)

III. Given CFGs G1 and G2 is L(G1) = L(G2)
IV. Given a TM M, is L(M) =

[GATE - 2016]
(a) I and IV only (b) II and III only
(c) III and IV only (d) II and IV only

2. For any two languages L1 and L2 such that
L1 is context free and L2 is recursively
enumerable but not recursive, which of the
following is/are necessarily true
1.

1L (complement of L1) is recursive

2. 2L (complement of L2) is recursive

3. 1L is context free

4. 2 2L L is recursively enumerable

 [GATE - 2015]
(a) 1 only (b) 3 only
(c) 3 and 4 only (d) 1 and 4 only

3. Which of the following languages is/are
regular?
L1: {wxwR| w, x {a, b}* and |w|, |x| > 0}, wR
is the reverse of string w
L2: {anbm| m n and m, n 0}
L3: {apbqcr| p, q, r 0}

[GATE - 2015]
(a) L1 and L3 only (b) L2 only
(c) L2 and L3 only (d) L3 only

4. Which one of the following is TRUE?

 [GATE - 2014]
(a) The language L = {anbn | n 0} is regular.
(b) The language L = {an | n is prime} is regular.

some k N with = {a, b}} is regular.

(d) The language L = {ww | w with = {0,
1}} is regular.

5. Let L be a language and L be its
complement. Which one of the following is
NOT a viable possibility?

[GATE - 2014]
(a) Neither L nor L is recursively enumerable
(r.e.).

(b) One of L and L is R.E but not recursive; the
other is not R.E.

(c) Both L and L are R.E but not recursive.

(d) Both L and L are recursive.

6. If L1 {an |n 0} and L2 = { bn | n 0},
consider
I. L1.L2 is a regular language
II. L1.L2 = {anbn | n 0}
Which one of the following is CORRECT?

 [GATE - 2014]
(a) Only I
(b) Only II
(c) Both I and II
(d) Neither I nor II

7. Let A m B denotes that language A is
mapping reducible (also known as many-to-one
reducible) to language B. which one of the
following is FALSE?

[GATE - 2014]
(a) If A m B and B is recursive then A is
recursive.
(b) If A m B and A is undecidable then B is
undecidable.
(c) If A m B and B is recursively enumerable
then A is recursively enumerable.
(d) If A m B and B is not recursively
enumerable then A is not recursively
enumerable.

8. Let < M > be the encoding of a Turing
machine as a string over = {0, 1}. Let L = {<

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
108

CHAPTER - 5
P, NP, NP-HARD AND NP-COMPLETE PROBLEMS

5.1 INTRODUCTION

1. There are many problems exist in the world. Some of the problems are very easy and some are
difficult. Easy problems are also called solvable and difficult problems are those problems which
are not solvable or take more time to solve.
2. Solvable problems are called tractable problems.

5.2 ABSTRACT PROBLEM
1. It is defined as binary relation on a set I of problem instances and a set S of problem solutions.
2. Abstract decision problem is a function that maps the instance set I to the solution set {0, 1}.
For example, decision problem is related to shortest-path is the Problem path.
i = < G, u, v, k> is the instance of the shortest path problem that belongs to set I of shortest path. If
path (i) = yes, it implies there is a path from u to v has almost k edges. Otherwise path (i) = No.

5.3 ENCODING PART
1.It is a mapping of abstract objects from a set to the set of binary strings such as set N = {0, 1, 2,

 e (30 = 11.
2.Similarly are abstract objects such as polygons, graphs, functions, ordered pairs, programs can
be encoded as binary strings.
3.Encoding also exists in shortest part abstract decision problem where every instance from set S
can be encoded
4.It transforms abstract problem to concrete problem.
5.The computer algorithm that solves abstract decision problem actually takes on encoding of a
problem instance as input.
6.Concrete problem has input instances as a binary strings.
7.Polynomial-time solvability of a problem also depends upon encoding but it is assumed that it is
independent of encoding procedure.
8.Theory of computation discipline allows us to express the relation between decision problems
and algorithms that solve them concisely.
9.If there is an abstract decision problem with instance set I, its encoding set e(I) and solution set S
= {0, 1}. Then, if an algorithm/machine model accepts a string x e(I) if I given as input then
language (L) of machine/Algorithm will be L ={ x e (I): S(x) = 1 }. So, it includes all accepted
strings but it rejects x e (I) and S(x) = 0
10.Language L/problems is said to be decidable if every binary string in L is accepted by
machine/algorithm and every binary string into in L is rejected by the machine/algorithm.
Therefore, all Turing machine problems/languages are decidable.
11.A language L is said to be decided in polynomial time, if there is an algorithm for which a
constant k exist and for strings of any-length n x {0, 1}*, the algorithm correctly decides
whether x L in time O (nk).
12.Turing machine languages are decided in finite amount of time. It also implies that they are
decidable

13.Some algorithm/machine accepts all x L, but loop forever. If x L . These languages are
called recursive enumerable.

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
112

ASSIGNMENT

1. P NP
(a) True (b) False
(c) C (d) None of these

2. Consider the following problems:
1. Finding out in directed graph whether
Hamiltonian cycle exists.
2. Given Boolean formula is 2CNF
3. Finding out shortest path
Find out which is correct?
(a) All three are NP complete problem
(b) (2) and (3) are NP complete (1) is NP Hard
(c) (1) is NP Complete,(2).and (3) can be
solved in polynomial time
(d) All three will be solved in polynomial time

3. A problem is in NP and as hard as any
problem in NP.
The given problem is:
(a) NP hard
(b) NP
(c) NP hard NP complete
(d) NP complete

4. Jitendra and Shantanu have been asked to
show certain problem A is NP-complete.
Jitendra shows a polynomial time reduction
from the clique problem to A and Shantanu
shows polynomial time reduction from A to
clique problem. Which of the following can be
inferred from this reduction?
(a)A is NP hard but not NP complete
(b)A is in NP, but is not NP complete
(c)A is NP-complete
(d)A is neither NP hard, nor in NP

5. If a problem requires time (n100) problem is:
(a)Tractable (b) Intractable
(c)NP-hard (d) None of these

6. NP languages are closed under which of the
following operation
I. Union

II. Intersection
III. Complement
IV. Concatenation
V. Kleene star
(a) I, II, IV, V
(b) I, II, III, IV, V
(c) I, II, III,
(d) IV, V

7. Suppose we are able to solve Hamiltonian
cycle in polynomial time, then which of the
following relations will hold?
(a)NP P = (b) P NP
(c)P CO-NP (d) P = NP

8. Determine the correctness or otherwise of the
following Assertion [A] and the Reason [R].
Assertion: Any given problem in P will also be
in NP
Reason: P NP
(a)Both statements are not related and invalid
(b)Both statements are not related
(c)Both statements are related and valid reason
is valid
(d)Both statements are related but reason is
invalid.

9. Polynomial time algorithm is closed under
which of the following operation?
(i) Addition
(ii) Multiplication
(iii)Composition
(iv)Complement
(a) (i), (ii) only
(b) (i), (ii) and (iii) only
(c) All
(d) None of these

10. A polynomial time algorithm makes at most
constant number of calls to polynomial time
subroutines. The resulting algorithm runs in:
(a)Polynomial time
(b)Non polynomial time

THEORY OF COMPUTATION GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
114

GATE QUESTIONS

1. LanguageL1 is polynomial time reducible to
Language L2. Language L3 is polynomial time
reducible to L2. Which is turn is polynomial
time reducible to language L4.
Which of the following is/are true?
I. If L4 P, L2 P
II. If L1 P or L3 P, then L2 P
III. If L1 P, if and only if L3 P
IV. If L4 P, then L1 P and L3 P
 [GATE - 2015]
(a) II only (b) III only
(c) I and IV only (d) I only

2. Consider two decision problems Q1, Q2 such
that Q1 reduces in polynomial time to 3-SAT
and 3-SAT reduces in polynomial time to Q2.

Then which one of the following is consistent
with the above statement?
 [GATE - 2015]

(a) Q1 is in NP, Q2 is NP hard.
(b) Q2 is in NP, Q1 is NP hard.
(c) Both Q1 and Q2 are in NP.
(d) Both Q1 and Q2 are NP hard.

3. Consider the following statements.
I. The complement of every Turing decidable
language is Turing decidable
II. There exists some language which is in NP
but is not Turing decidable
III. If L is a language in NP, L is Turing
decidable
Which of the above statements is/are true?
 [GATE - 2015]
(a) Only II (b) Only III
(c) Only I and II (d) Only I and III

4. Consider the decision problem 2CNFSAT
defined as follows :
{ | is a satisfiable propositional formula in
CNF with at most two literals per clause}

For example, = (x1 v x2) (x1 3x) (x2 x4)

is a Boolean formula and it is in 2CNFSAT.
The decision problem 2CNFSAT is
 [GATE - 2014]
(a) NP-Complete
(b) Solvable in polynomial time by reduction to
directed graph reachability.
(c) Solvable in constant time since any input
instance is satisfiable.
(d) NP-hard, but not NP-complete.

5. Which of the following statements are
TRUE?
1.The problem of determining whether there
exists a cycle in an undirected graph is in P.
2.The problem of determining whether there
exists a cycle in an undirected graph is in NP.
3.If a problem A is NP-complete, there exists a
non-deterministic polynomial time algorithm to
solve A.

[GATE - 2013]
(a) 1, 2 and 3 (b) 1 and 2 only
(c) 2 and 3 only (d) 1 and 3 only

6. Assuming P NP, which of the following is
TRUE?

[GATE - 2012]
(a) NP-complete = NP

(b) NP-complete P =
(c) NP-hard = NP
(d) P = NP-complete

7. Let S be an NP-complete problem Q and R be
two other problems not known to be in NP. Q is
polynomial-time reducible to S and S is
polynomial-time reducible to R. which one of
the following statements is true?
 [GATE - 2006]
(a) R is NP-complete (b) R is NP-hard
(c) Q is NP-complete (d) Q is NP-hard

SECTION - B
COMPILER DESIGN

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
1

CHAPTER - 1
LEXICAL ANALYSIS

1.1 INTRODUCTION
There are various language processors that process/convert High-Level language code into
Machine-level code. They can be categorized as
1. Compiler
2. Interpreter
3. Assembler

1.1.1 Compiler
1.It is a program that translates a source code in one language to machine language.
2.It is faster than an interpreter at mapping inputs to outputs.

1.1.2 Interpreter
1.It directly executes the operations specified in the source program as input supplied by the user.
2.It usually gives better error diagnostics as it executes the source program statement by statement.

 Java language Processors combine both interpreter and compiler.

1.1.3 Assembler
1. It translates source code into a language that is intermediate between High-Level language and
Machine Level Language.
2. It translates source code in assembly language to relocatable machine code as its output.

1.2 STRUCTURE OF COMPILER
1. Generally, A Compiler is designed to have several phases that are responsible for the functions
such as Lexical Analysis, Syntax Analysis, Semantic Analysis, Intermediate Code Generation,
Code Optimization etc.
2. The structure of Compiler is given as following

Lexical Analysis

Token stream

Syntax Analysis

Syntax Tree

Syntax Tree

Semantic Analysis

Intermediate code
 Generation

Intermediate
Representation

Machine Independent
code Optimization

Intermediate
Representation

Code Generation

Target-Machine
 code

Target-Machine
optimized code

Machine Dependent
code Optimization

S

Y

M

B

O

L

T

A

B

L

E

E

R

R

O

R

H

A

N

D

L

E

R

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
7

ASSIGNMENT

1. Compiler time errors do not include
(a) Lexical errors (b) Syntactic errors
(c) Semantic errors (d) None of these

2. The range checking for certain values, array
subscripts and case statements selectors are
examples of
(a) Semantic errors (b) Dynamic errors
(c) Syntactic errors (d) None of these

3. A compiler which allows only the modified
section of the source code to be recompiled is
called as
(a) Incremental compiler
(b) Re-configurable compiler
(c) Dynamic compiler
(d) Subjective compiler

4. Which table is a permanent database that has
an entry for each terminal symbol?
(a) Terminal table (b) Literal table
(c) Identifier table (d) Reductions

5. The task of lexical analysis phase is
(a)To parse the source program into the basic
elements or tokens of the language
(b) To build a literal table and an identifier table
(c) To build a uniform symbol table
(d) All of the above

6. Consider the following statements
S1: The set of string described by a rule is called
pattern associated with the token.
S2: A lexeme is a sequence of characters in the
source program that is matched by pattern for
token.
Which of above statements is are true?
(a) Both S1 and S2 are true
(b) S1 is true S2 is false
(c) S2 is true S1 is false
(d) Both S1 and S2 are false

7. Which of the following strings can definitely
be said to be token without looking at the next
input character while compiling a pascal
program?
(i) Begin
(ii) Program
(iii) <>
(a) (i) (b) (ii)
(c) (iii) (d) all of the above

8. In compiler, keywords of a language are
recognized during
(a) Parsing of the program
(b) Code generation
(c) Lexical analysis
(d) Dataflow analysis

9. Which of the following is used to group the
characters into tokens?
(a) Parser
(b) Code optimization
(c) Code generator
(d) Scanner

10. Which of the following grammars are not
phase- structured?
(a) Regular
(b) Context free grammar
(c) Context sensitive
(d) None of the above

11. Cross-compiler is a compiler
(a)That generates object code for its host
machine
(b)Which is written in a language that is the
same as the source language
(c)Which is written in a language that is
different from the source language.
(d)That runs on one machine and produces
object code for another machine

12. How many tokens are contained in the
following FORTAN statement:

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
12

GATE QUESTIONS

1. Consider the following Syntax Directed
Translation Scheme (SDTS), with non-terminals
{S, A} and terminals {a,b}.

Using the above SDTS, the output printed by a
bottom-up parser, for the input aab is:

 [GATE - 2016]
(a) 1 3 2 (b) 2 2 3
(c) 2 3 1 (d) syntax error

2. In a compiler, keywords of a language are
recognized during

[GATE - 2011]
(a) Parsing of the program
(b) The code generation
(c) The lexical analysis of the program
(d) Dataflow analysis

3. Which data structure in a complier is used
for managing information about variables and
their attributes?

[GATE - 2010]
(a) Abstract syntax tree (b) Symbol table
(c) Semantic stack (d) Parse table

4. Consider line number 3 of the following C-
program.

int main () { / Line 1 /
int i, n; / Line 2 /

fro (i = 0, i < n, i + +); / Line 3 /
}

while creating the object-module
[GATE - 2005]

(a) No compilation error
(b) Only a lexical error
(c) Only syntactic errors
(d) Both lexical and syntactic errors

5. Consider a program P that consists of two
source modules M1 and M2 contained in two
different files. If M1 contains a reference to a
function defined in M2, the reference will be
resolved at

[GATE - 2004]
(a) Edit-time (b) Compile-time
(c) Link-time (d) Load-time

6. Which of the following is NOT an
advantage of using shared; dynamically linked
libraries as opposed to using statically linked
libraries?

[GATE - 2003]
(a) Smaller sizes of executable
(b) Lesser overall page fault rate in the system
(c) Faster program startup
(d) Existing programs need not be re-linked to
take advantage of newer versions of libraries

7. The number of tokens in the following C
statement
Print

[GATE - 2000]
(a) 3 (b) 26
(c) 10 (d) 21

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
14

CHAPTER - 2
SYNTAX ANALYSIS

2.1 INTRODUCTION
1.It is the second phase of compilation.
2.Its purpose is to recombine, obtained tokens from Lexical Analysis and to output the structure of
text.
3.The structure of the text is rejected by Tree data structure that is called here Syntax Tree of the
text.
4.Tokens of Lexical Analysis are at the leaf level of the syntax Tree. When leaves are read from
left to right, the sequence is the same as in the input text.
5.It is a method for recovery of common errors
6.It also reject in valid texts by reporting syntax errors
7.The syntactic structure of well formed programs, which contains functions, statement out of
expressions, function out of declarations and statements etc.
8.Syntax of language constructs can be specified by context free grammars or BNF (Backus
Naur Form) notation.

2.2 ROLE OF PARSER
1.It takes a string of tokens from the lexical analyzer and verifies that the string of token names
can be generated by the grammar for the source language.
2.It reports any syntax errors in the program language.
3.It constructs a parse tree for well formed programs.
4.There are three general types of parsers for grammars: Universal , top down and Bottom up
5.Commonly parsing methods used in compilers can be classified as being either top down or
bottom up

2.3 SYNTAX ERROR HANDLING
1.Syntax Analyzer handles syntactic errors such as misplaced semicolons, extra | missing braces
i.e. {or}, misplaced else etc.
2.It uses two error recovery strategies having broad applicability Panic-Mode recovery, Phrase
Level Recovery, Error Productions, Global correction.

2.3.1 Panic-Mode Recovery
1 In this method, on discovering an error, the parser discards input symbols one at a time until one
of a designated set of synchronizing tokens (delimiters such as})
2.While correction, it often skips a considerable amount of input without checking it for additional
errors.

2.3.1.1 Advantage
1.It is simple method
2.It is guaranteed not to go into an in-finite loop.

2.3.2 Phrase - Level Recovery
1. Here, p when parser detects an error, it performs local correction on the remaining input.
2. Local correction means to replace a prefix of the remaining input by same string that allow the
parser to continue.

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
43

GATE QUESTIONS

1. Consider the following expression grammar
G :
E E T|T
T T +F |F
F (E) |id
Which of the following grammars is not left
recursive , but us equivalent to G ?

[GATE - 2017]
(a) E E T|T
T T +F |F
F (E) |id
(b) E

 -
T T+F |F
F (E) |id
(c) E TX
X -TX |
T FY
Y FY|
F (E) |id
(d) E TX |(TX)
X TX|+TX|
T id

2. Which of the following statements about
parser is/are CORRECT ?
I. Canonical LR is more powerful than SLR
II. SLR is more powerful than LALR
III. SLR is more powerful than CLR

[GATE - 2017]
(a) I only (b) II only
(c) III only (d) II and III only

3. Consider the following grammar :
P xQRS
Q yz |z
R w|
S y
What is FOLLOW (Q)?

[GATE - 2017]
(a) {R} (b) {w}

(c) {w, y} (d) {w, $}

4. A student wrote two context-free grammars
G1 and G2 for generating a single C-like array
declaration. The dimension of the array is at
least one. For example,
int a[10][3];
The grammars use D as the start symbol, and
use six terminal symbols int; id[] num.
Grammar G1 Grammar G2

 E
Which of the grammars correctly generate the
declaration mentioned above?

[GATE - 2016]
(a) Both G1 and G2
(b) Only G1
(c) Only G2
(d) Neither G1 nor G2

5. Which one of the following grammars is
free from left recursion?

[GATE - 2016]
(a

(b

(c

(d

6. Consider the grammar defined by the
following production rules, with two operators
 and +

S T P

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
53

CHAPTER - 3
SEMANTIC ANALYSIS

3.1INTRODUCTION
1.Generally any string/statement derived from production in a grammar specifies the required
programming constructs of the language that are called semantic rules.
2.Syntax-Directed Definition is termed for attaching rules or program fragments to productions in
a grammar.
3.Before Syntax Directed Translation, Syntax-directed Definition is done.
4.Generally, Syntax-Directed Translation is to construct a parse tree and then to compute the
values of attributes at the nodes of the tree according to the syntax-Directed Definitions (SDD).

3.2 SYNTAX-DIRECTED DEFINITION (SDD)
1.It is a context-free grammar together with attributes and rules.
Attributes are associated with grammar symbols and rules are associated with the productions.
2.Attributes can be of any kind: numbers, types, table reference or strings.
3.If X is a symbol and a is one of its attributes, then X.a denotes the value of a at a particular
parse-tree node labeled X.

Example.
If we define the semantic rules to be associated with each production of the grammar. Then, we
call its Syntax-Directed Definition. It is follows as.

Productions of Grammar Associated Semantic Rule
E E1 E.val = E1. val
E1 E2 + T E1.val = E2. val + T. val
E1 T E1 val = T. val

T T1 * F T. val = T1 . val * F. val
T F T. val = F. val
F (E1) F. val = E1. val
F digit F. val = digit

In above grammar, each non-terminal has a single attribute called val.
Let us take semantic rule, T. Val = T1. Val F. Val that computes value of head T by multiplying
the values of head T1 and head F. Similarly, we can understand all other semantic rules.
There are two kinds of attributes for non-terminals
1. Synthesized Attributed 2. Inherited Attribute

1. Synthesized Attributed
1.It defines a non-terminal at any node of parse tree.
2.It is defined by semantic rule associated with the production at any node.
3.Synthesized attribute at node N is defined in terms of attribute values at the children of the node
N and at N itself.

2. Inherited Attribute
1.It also defines any non-terminal at a parse tree node.

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
61

GATE QUESTIONS

1. Consider the expression tree shown. Each
leaf represents a numerical value, which can
either be 0 or 1. Over all possible choices of the
values at the leaves, the maximum possible
value of the expression represented by the tree
is ______.

0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
[GATE - 2014]

2. Consider the following translation scheme.
S ER
R
E
F (S) | id {print (id. Value);}
Here id is a token that represents an integer and
id. value represents the corresponding integer

scheme prints
[GATE - 2006]

(a) 2 3 + 4 (b) 2 + 3 4
(c) 2 3 4 + (d) 2 3 4 +

Common Data for Q. 3 & Q. 4
Consider the following expression grammar.
The semantic rules for expression calculation
are stated next to each grammar production.
E number E.val = number.val
 (1).val = E(2).val + E(3) .val
 (1) .val = E(2). Val E(3) .val;

3. The above grammar and the semantic rules
are fed to a YACC tool (which is an LALR(1)
parser generator) for parsing and evaluating
arithmetic expressions. Which one of the

following is true about the action of YACC for
the given grammar?

[GATE - 2005]
(a)It detects recursion and eliminates recursion
(b)It detects reduce-reduce conflict, and
resolves
(c)It detects shift-reduce conflict, and resolves
the conflict in favor of a shift over a reduce
action
(d)It detects shift-reduce conflict and resolves
the conflict in favor of a reduce over a shift
action

4. Assume the conflicts in Part (a) of this
question are resolved and an LALR(1) parser is
generated for parsing arithmetic expressions as
per the given grammar. Consider an expression
3 2 + 1. What precedence and associativity
properties does the generated parser realize?

[GATE - 2005]
(a) Equal precedence and left associativity;
expression is evaluated to 7
(b) Equal precedence and right associativiy;
expression is evaluated to 9
(c
and both operators are left associative;
expression is evaluated to 7
(d) Precedence
and both operators are left associative;
expression is evaluated to 9

5. Consider the grammar with the following
translation rules and E as the start symbol.
E E1 # T {E.value = E1.value T.value}
| T {E.value = T. value}
T T1 & F {T.value = T1. Value + F.Value}
| F {T.value = F. value}
F num {F. value = num. value}
Compute E.value for the root of the parse tree
for the expression: 2 # 3 & 5 # 6 & 4.

[GATE - 2004]
(a) 200 (b) 180
(c) 160 (d) 40

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
64

CHAPTER - 4
INTERMEDIATE CODE GENERATION

4.1 INTRODUCTION
Intermediate code generation using the parse rule produces a language from input language. In
compiler the front end translates a source program into an intermediate code, from which back end
generates target code. Details of languages are included in back end as far as possible.

Why we need Intermediate Code?
Intermediate code has property that it is simple enough to be translated to assembly code.

Parser Static

checker
Intermediate

Code
Code generation Intermediate Code

 Generator

The benefits of using machine independent intermediate form
1.Retargeting is facilitated
2.Machine independent code optimizer can be applied to intermediate representation.

4.2 REPRESENTATION OF INTERMEDIATE CODE GENERATION
Intermediate code can be represented by different representations. These are classified as follows

 ICG

Tree form

Syntax tree DAG
Postfix form 3-address code

Linear form

4.2.1 Postfix Notation
Postfix Notation is written with operator after operands in the expression.
e.g.:- infix way of writing sum of a and b is a + b and postfix notation of same infix expression is
ab+. In general if E1 and E2 are any postfix expression and r is any binary operator, the result of
applying r to E1 and E2 is indicated as E1E2 r. No parentheses are needed in postfix notation
because the position and number of arguments of the operators only one way to decode a postfix
expression.
Example. If infix expression is (a b) (c + d) + (a b) then its postfix notation
ab cd + ab - +

4.2.2 Syntax Tree
Syntax tree is condensed form of parse tree. The operator and keywords nodes of parse tree are
moved to their parent and chain of single productions is replaced by single link.
Example.
Syntax tree of following infix expression
(a) (a + b) (a + b + c)

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
72

CHAPTER - 5
CODE OPTIMIZATION

5.1 INTRODUCTION
1.Code optimization is a set of methods of code modification to improve code quality and
efficiency. A program may be optimized so that it becomes smaller in size to consume less
memory and or performs fewer input/output operations to execute more rapidly.
2.Optimization can be performed by automatic optimizers or programmers. An optimizer software
tool or built-in unit of compiler (so called optimized compiler). Modern processes can also
optimize the execution of code instruction.
3.Code optimization involves complex analysis of intermediate code and performance of various
transformations but every optimizing transformation must also preserve the semantics of program
when attempting an optimizing transformation. The following criteria should be applied.
(i) Optimization should capture most of the potential improvement without an unreasonable
amount of effort.
(ii)The optimization should be such that the meaning of source program is preserved.
(iii) Optimization should, on average, reduce the time and space expanded by the object code.
(iv) Optimization can be machine dependent or machine independent.
(v) Machine dependent optimization requires knowledge of target machine while machine
independent optimization can be performed independently of the target machine for which
compiler is generating codes.

5.2 ELIMINATION OF COMMON SUB EXPRESSION
An occurrence of expression E is called a common sub expression if E was previously computed,
and the values of variable in E have not changed since the previous computation. We can avoid re-
computing the expression if we can use previously computed value.
Example.
If execution order of statements is following
1. t6:=4 I 2. X:a[t6] 3. t7:=4 i 4. t8:=4 j 5. t9:=a[t8]
6. a[t4]:t9 7. t10:4 j 8. A[t10]:x can be written
1. t6:4 I 2. X:a[t6] 3. t8:4 j

4. t9:=a[t8] 5. a[t6]:=t9 6. a[t8]:X Here t7 eliminated by using t6 and t10 is eliminated by using t8 instead of t10.

5.3 METHODS OF CODE OPTIMIZATION
There are various methods by which we can optimize any code.
1.loop optimization
2.Strength Reduction
3.Constant folding
4.Redundancy elimination
5.Dead code elimination
6.Algebraic expression

5.3.1 Loop Optimization
As we know the statement executed inside the loop is the number of times the loop runs. Due to
these loops, a program spends the bulk of time. So to decrease the running time, There is need to

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
76

ASSIGNMENT

1. Peephole optimization is a form of
(a) Loop optimization
(b) Constant folding
(c) Local optimization
(d) None of these

2. Which of the following expression is
represented by the parse tree given below?
(a) A+B*C-D/E+F
(b) A+(B+(C-D))/E+F
(c) A+B*C-D/(E+F)
(d) A+B*(C-D)/(E+F)

()

()

()

()

()

A

E

B

C D

F

3. Which of the following is/are incorrect about
intermediate code representation?
(i) The indirect triples and quadruples are
required about the same amount of space.
(ii) The indirect triples are much efficient for
recording of code as compared to quadruples
(a) (i) only (b) (ii) only
(c) (ii) and (i) (d) neither (i) nor (ii)

4. Which of the following expressions is
represented by the parse tree given below?

()

()

()

(1)

()

E

B

C D

F

X

(a) A+B*C-D/E+F
(b) A*(B+(C-D)) /E +F
(c) A+B*C-D/ (E+F)
(d) A+B*(C-D) / (E+F)

5. The method which merges the bodies of two
loops is
(a) Loop unrolling (b) Loop ramming
(c) Constant folding (d) None of these

6. Loop is a collection of nodes that is
(a) Strongly connected
(b) Loosely connected and has a unique entry
(c) Strongly connected and has a unique entry
(d) None of these

7. The identification of common sub-
expression and replacement of run-time
computations by compile-time computations is
(a) Local optimization
(b) Loop optimization
(c) Constant folding
(d) Data flow analysis

8. The specific tasks storage manager performs
are
(a) Allocation/deallocation of storage to
programs
(b) Protection of storage area allocated to a
program form illegal access by other programs
in the system.

COMPILER DESIGN GATE-2019

ECG PUBLICATIONS

 A unit of ENGINEERS CAREER GROUP
79

GATE QUESTIONS

1. Match the following:
List-I
P. lexical analysis
Q. Top down parsing
R. Semantic Analysis
S. Runtime environments
List-II
(i) Leftmost derivation
(ii) Type checking
(iii) Regular expressions
(iv) Activation records

 [GATE - 2016]
(a) P-i , Q-ii, R-iv, S-iii
(b) P-iii, Q-i, R-ii, S-iv
(c) P-ii, Q-iii, R- i, S-iv
(d) P-iv, Q-i, R-ii, S-iii

2. Consider the following code segment.
x = u t;
y = x * v;
x = y + w;
y = t z;
y = x * y;
The minimum number of total variables
required to convert the above code segment to
static single assignment form is __________.

 [GATE - 2016]

3. Consider the basic block given below.
a = b + c , c = a + d
d = b + c , e = d b
a = e + b
The minimum number of nodes and edges
present in the DAG representation of the above
basic block respectively are

[GATE - 2014]
(a) 6 and 6 (b) 8 and 10
(c) 9 and 12 (d) 4 and 4

4. Which one of the following is FALSE?
[GATE - 2014]

(a) A basic block is a sequence of instructions
where control enters the sequence at the
beginning and exists at the end.

(b) Available expression analysis can be used
for common sub expression elimination.
(c) Live variable analysis can be used for dead
code elimination.
(d) x = 4 5 x is an example of common sub
expression elimination.

Common Data for Q. 5 & Q. 6
The following code segment is executed on a
processor which allows only register operands
in its instructions. Each instruction can have at
most two source operands and one destinations
operand. Assume that all variables are dead
after this code segment.
c = a + b;
d = c a;
e = c + a;
x = c c;
if (x > a) {
y = a a;
}
Else {
d = d d;
e = e e;
}

5. Suppose the instruction set architecture of the
processor has only two registers. The only
allowed complier optimization is code motion,
which moves statements from one place to
another while preserving correctness. What is
the minimum number of spills to memory in the
compiled code?

[GATE - 2013]
(a) 0 (b) 1
(c) 2 (d) 3

6. What is the minimum number of registers
needed in the instruction set architecture of the
processor to compile this code segment without
any spill to memory? Do not apply any
optimization other than optimizing register
allocation?

