

2019

NETWORK ANALYSIS

ELECTRICAL ENGINEERING

ECG
Publications

A Unit of ENGINEERS CAREER GROUP
Head O ce: S.C.O-121-122-123, $2^{\text {nd }}$ oor, Sector-34/A, Chandigarh-160022
Website: www.engineerscareergroup.in
Toll Free: 1800-270-4242
E-Mail: ecgpublica ons@gmail.com | info@engineerscareergroup.in

GATE-2019: Network Analysis| Detailed theory with GATE \& ESE previous year papers and detailed solu ons.
©Copyright @2016 by ECG Publica ons
(A unit of ENGINEERS CAREER GROUP)
All rights are reserved to reproduce the copy of this book in the form storage, introduced into a retrieval system, electronic, mechanical, photocopying, recording, screenshot or any other form without any prior wri en permission from ECG Publica ons (A Unit of ENGINEERS CAREER GROUP).

First Edi on: 2016
Price of Book: INR 825/-

ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) collected and proving data like: theory for di erent topics or previous year solu ons very carefully while publishing this book. If in any case inaccuracy or prin ng error may nd or occurred then ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) owes no responsibility. The sugges ons for inaccuracies or prin ng error will always be welcome by us.

CONTEXNTS

1. BASIC CONCEPTS1-43
2. NETWORK LAWS 44-113
3. A.C.ANALYSIS 114-170
4. MAGNETICALLY COUPLED CIRCUIT. 171-191
5. NETWORK THEOREMS 192-290
6. TRANSIENT ANALYSIS. 291-365
7. LAPLACE TRANFORMATION AND ITS APPLICATION IN CIRCUIT ANALYSIS 366-382
8. RESONANCE 383-425
9. TWO PORT NETWORKS 426-511
10. GRAPH THEORY 512-537
11. NETWORK FUNCTIONS 538-581

CHAPTER - 1

BASIC CONCEPTS

1.1INTRODUCTION

1.1.1 Charge

Charge can be classified as:

1. Stationary Charge
2. Dynamic Charge

1. Stationary Charge

Stationary charge does not result into electric current because the flow of current means charge moving with net rate across any cross section.
(i) Any electric circuit should always follow law of conservation of charge and law of conservation of energy.
(ii) Circuit theory is analysed always at low frequency and field theory always at high frequency.
(iii) Transit time effect is always neglected at low frequency because
$T \gg t_{r}$
Where T is time period of sinosdual signal
t_{r} is Transit Time (time taken by signal effect to travel from one point to another point).
(iv) Elemental law is obeyed only at low frequency such as ohm's law. It is not applicable at high frequency because of distributed nature of element.
(v) Elemental law always depend upon the nature of element

For different Element, Different Form of Ohm's Law is present
(i) In time domain, the ohm's law are applicable and also in frequency domain.

Current flowing out of this body is given by equation of continuity as below
$\mathrm{I}=\oint \overrightarrow{\mathrm{J}} \cdot \overrightarrow{\mathrm{ds}}=-\frac{\mathrm{dQ}_{\text {in }}}{\mathrm{dt}}$
This equation gives the law of conservation of charge.
If $\frac{\mathrm{dQ}_{\mathrm{in}}}{\mathrm{dt}}=0$; means no rate of change of charge within body then eq.(i) become

1. R_{A} and R_{B} are the input resistances of circuits as shown below. The circuits extend infinitely in the direction shown. Which one of the statements is TRUE?

(a) $R_{A}=R_{B}$
(b) $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=0$
(c) $R_{A}<R_{B}$
(d) $R_{B}=R_{A} /\left(1+R_{A}\right)$
2. In the circuit shown in the figure, the magnitude of the current (in amperes) through R_{2} is \qquad

[GATE - 2016]
3. An incandescent lamp is marked $40 \mathrm{~W}, 240 \mathrm{~V}$. If resistance at room temperature $\left(26^{\circ} \mathrm{C}\right)$ is 120Ω, and temperature coefficient of resistance is $4.8 \times 10^{-3} /{ }^{\circ} \mathrm{C}$, then its ' ON ' state filament temperature in ${ }^{\circ} \mathrm{C}$ is approximately
[GATE - 2014]
4. The circuit shown in the figure represents a

[GATE - 2014]
(a) Voltage controlled voltage source
(b) Voltage controlled current source
(c) Current controlled current source
(d) Current controlled voltage source
5. A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that during the talk - time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the battery deliver during the talk - time?

[GATE - 2009]
(a) 220 J
(b) 12 kJ
(c) 13.2 kJ
(d) 14.4 J

Common data for Q. 6 \& Q. 7
The current $i(t)$ sketched in the figure flows through a initially uncharged 0.3 nF capacitor.

6. The charge stored in the capacitor at $\mathrm{t}=5 \mu \mathrm{~s}$, will be
[GATE - 2008]

CHAPTER - 2

NETWORK LAWS

2.1 KIRCHOFF'S VOLTAGE LAW (KVL)

It states that algebraic sum of all voltages in a closed path or loop is zero

$$
\sum_{\text {loop }} \mathrm{V}=0
$$

For writing KVL start from any point in the loop and come to the same point via transversing the path of closed loop. While doing so take voltage rises as positive and voltage drops as negative then
Σ voltage rise $+\Sigma$ voltage drops $=0$
Q^{+}positive is moving
A-B is energy is gained say W_{1}
B-C is energy lost say W_{2}
C-D is energy lost say W_{3}
D-A is energy lost say W_{4}
by consecration of energy
$\mathrm{W}_{1}=\mathrm{W}_{2}+\mathrm{W}_{3}+\mathrm{W}_{4}$ or
$\mathrm{W}_{1}-\mathrm{W}_{2}-\mathrm{W}_{3}-\mathrm{W}_{4}=0$
Divide by $\mathrm{Q}=\frac{\mathrm{W}_{1}}{\mathrm{Q}}-\frac{\mathrm{W}_{2}}{\mathrm{Q}}-\frac{\mathrm{W}_{3}}{\mathrm{Q}}-\frac{\mathrm{W}_{4}}{\mathrm{Q}}=0$
$\Rightarrow V_{1}-V_{2}-V_{3}-V_{4}=0$
$\Sigma \mathrm{V}=0($ In a loop $)$
Example. KVL in this loop starting from a in clockwise direction is
$-V_{7}-V_{8}-V_{5}+V_{6}=0$
$\Rightarrow \mathrm{V}_{6}=\mathrm{V}_{7}+\mathrm{V}_{8}+\mathrm{V}_{5}$

The basis of the law is that if we start from a particular junction and go round the mesh till we come back to the starting point, then we must be at the same potential with which we started. Hence it means that all the sources of e.m.f. met on the way must necessarily be equal to the voltage drops in the resistances, every voltage being given its proper sign, plus or minus.

GATE QUESTIONS

1. Consider the network shown below with $\mathrm{R}_{1}=$
$1 \Omega, \mathrm{R}_{2}=2 \Omega$ and $\mathrm{R}_{3}=3 \Omega$. The network is connected to a constant voltage source of 11 V .

The magnitude of the current (in amperes, accurate to two decimal places) through the source is \qquad
[GATE - 2018]
2. A circuit consisting of dependent and independent sources is shown in the figure. If the voltage at Node -1 is -1 V , then the voltage at Node -2 is \qquad V.

[GATE - 2017]
3. In the circuit shown below, the voltage and current sources are ideal. The voltage ($\mathrm{V}_{\text {out }}$) across the current source, in volts, is

[GATE - 2016]
(a) 0
(b) 5
(d) 20
4. In the circuit shown below, the node voltage V_{A} is \qquad V.

[GATE - 2016]
5. In the given circuit, the current supplied by the battery, in ampere, is \qquad -.

[GATE - 2016]
6. In the figure shown, the current i (in ampere) is \qquad -.

[GATE - 2016]
7. In the given circuit, each resistor has a value equal to 1Ω

3.1 AC THROUGH PURE OHMIC RESISTANCE ALONE

$\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$
$\mathrm{v}=\mathrm{i} \mathrm{R}$
$\mathrm{i}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}} \sin \omega \mathrm{t}$
Current is max when $\sin w t=1$
i.e. $I_{m}=\frac{V_{m}}{R}$
$\therefore \mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$

3.2 AC THROUGH PURE INDUCTANCE ALONE

Whenever an alternating voltage is applied to a purely inductive coil, a back emf is produced due to the self-inductance of the coil

$\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}=\frac{\mathrm{Ldi}}{\mathrm{dt}} \Rightarrow \mathrm{di}=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{L}} \sin \omega \mathrm{tdt}$

$\mathrm{i}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \int \sin \omega \mathrm{tdt}$

ASSIGNMENT

1. The current flowing through a circuitcontaining passive elements like R , L or C is $I=15.5 \sin \left(2500 t-145^{\circ}\right)$ with voltage source $\mathrm{V}=311 \sin \left(2500 \mathrm{t}+170^{\circ}\right)$. The impedance Z is
(a) $20 \angle-25^{\circ} \Omega$
(b) $20 \angle 25^{\circ} \Omega$
(c) $20+\mathrm{j} 20 \Omega$
(d) $14.14-\mathrm{j} 14.14 \Omega$
2. There is a pure element in series with $\mathrm{R}=$ 25Ω which causes the current to lag the voltage by 20°. It is \qquad if frequency is 400 Hz .
(a) $35 \mu \mathrm{~F}$ capacitor
(b) 3.6 mH inductor
(c) $25 \mu \mathrm{~F}$ capacitor
(d) 2 mH inductor
3. There is a pure element in series with $R=$ 50Ω which causes the current to lead the voltage by 30°. It is \qquad if frequency is 500 Hz.
(a) $11 \mu \mathrm{~F}$ capacitor
(b) $22 \mu \mathrm{~F}$ capacitor
(c) 1.2 mH
(d) 2.4 mH inductor
4. In the $A C$ network shown in the figure. The phasor voltage V_{AB} (in volts) is

(a) $7 \angle 30^{\circ}$
(b) $6 \angle 30^{\circ}$
(c) $21 \angle 30^{\circ}$
(d) $11 \angle 30^{\circ}$
5. The differential equation for the current $i(t)$ in the circuit shown below is

(a) $2 \frac{\mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}(\mathrm{t})=-\sin \mathrm{t}$
(b) $2 \frac{\mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}(\mathrm{t})=\sin \mathrm{t}$
(c) $2 \frac{\mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}(\mathrm{t})=\cos \mathrm{t}$
(d) $2 \frac{\mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}(\mathrm{t})=-\cos \mathrm{t}$

Common Data for Q. 6 \& Q. 7

Given below is the current and applied voltage in a series connection of two pure circuit elements.
$V=150 \sin \left(314 t+10^{\circ}\right)$ volts
$\mathrm{i}=15 \sin \left(314 \mathrm{t}-53.4^{\circ}\right)$ amperes
6. The circuit contains a
(a) Resistance of 5Ω and capacitor of $1 \mu \mathrm{~F}$
(b) Resistance of 4.47Ω and inductor of 0.028 H
(c) Resistance of 6.7Ω and capacitor of $0.01 \mu \mathrm{~F}$
(d) Resistance of 10Ω and inductor of 0.021 H
7. Consider the circuit shown in the figure

In the circuit $4 \mathrm{R}^{2} \mathrm{C}=3 \mathrm{~L}$, the resonance frequency ω_{0} is
(a) $\sqrt{\mathrm{LC}}$
(b) $\frac{1}{\sqrt{\mathrm{LC}}}$
(c) $\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
(d) $\frac{1}{2 \sqrt{\mathrm{LC}}}$
8. A voltage V is represented as $\mathrm{V}=50 \sin (\omega \mathrm{t}+$ $\left.30^{\circ}\right)-25 \sin \left(3 \omega \mathrm{t}-60^{\circ}\right)+16 \sin \left(5 \omega \mathrm{t}+45^{\circ}\right) \mathrm{V}$ R.M.S. value of the voltage is
(a) 41 volt
(b) 41.11 volt
(c) 91 volt
(d) 58.14 volt

CHAPTER - 4

MAGNETICALLY COUPLED CIRCUIT

4.1 INTRODUCTION

When two circuits are so placed that a portion of the magnetic flux produced by one links with the turns of both, they are said to be mutually coupled magnetically. This effect is characterized by mutually inductance (M)
Mutual Inductance (M) is the property of magnetic coupling showing an induction of voltage in one coil/winding by a change of current in other coil/winding.

In the above figure two coils 1 and 2 with turns N_{1} and N_{2} are placed close to each other so that part of flux of one coil links with other coil too. The current i_{1} in coil 1 produces flux ϕ_{1}. Some part of ϕ_{1} links only with coil 1 let this is ϕ_{11} this is known as self flux or leakage flux of coil 1. ϕ_{12} is the flux which links with both the coils. ϕ_{12} is called mutual flux. Similarly current i_{2} in coil 2 produces ϕ_{2} which has ϕ_{22} and ϕ_{21} as its components. ϕ_{22} links only with coil 2 and ϕ_{21} links with both coils.
Now the voltage induced in coil 2 by change in current of coil $1 \mathrm{i}_{1}$
$\mathrm{v}_{21}=\mathrm{M}_{21} \frac{\mathrm{di}_{1}}{\mathrm{dt}}$
However by Faraday's Law
$\mathrm{v}_{21}=\mathrm{N}_{2} \frac{\mathrm{~d} \phi_{12}}{\mathrm{dt}}$
$\Rightarrow \mathrm{M}_{21}=\mathrm{N}_{2} \frac{\mathrm{~d} \phi_{12}}{\mathrm{di}_{1}}$
$\Rightarrow \mathrm{M}_{21}=\mathrm{N}_{2} \frac{\mathrm{~d} \phi_{12}}{\mathrm{di}_{1}}$
If air is the medium between two coils, then magnetization is linear and
$\frac{\mathrm{d} \phi_{12}}{\mathrm{di}_{1}}=\frac{\phi_{12}}{\mathrm{i}_{1}}$
Hence $M_{21}=\frac{N_{2} \phi_{12}}{i_{1}}$
Similarly $\mathrm{M}_{12}=\frac{\mathrm{N}_{1} \phi_{21}}{\mathrm{i}_{2}}$
Since the reluctance of both the fluxes i.e. $\phi_{12} \& \phi_{21}$ is same $M_{12} \& M_{21}$ are equal say $M_{12}=M_{21}=$ M.

CHAPTER - 5

NETWORK THEOREMS

5.1 THEVENIN'S THEORM

Any two terminal bilateral linear circuit can be replaced by an equivalent circuit consisting of a voltage source and a series resistor.

5.1.1 Steps for Solving a Network using Thevenin's Theorem

1. Remove the load resistor $\left(\mathrm{R}_{\mathrm{L}}\right)$ and find the open circuit voltage $\left(\mathrm{V}_{\mathrm{oc}}\right)$ across the open circuited load terminals.
2. Find the Thevenin's resistance $\left(\mathrm{R}_{\mathrm{TH}}\right)$

1. If Circuit contains only Independent Sources

Deactivate the constant sources (for voltage source remove it by short circuit and for the current source remove it by open circuit) and find the internal resistance (R_{TH}) of the source side looking through the open circuited load terminals.

2. For the circuits containing dependent sources in addition to or in absence of independent sources

Find V_{OC} by open circuiting the load terminals. Then short the load terminals and find the short circuit current $\left(\mathrm{I}_{\mathrm{SC}}\right)$ through the shorted terminals.
Thevenin's resistance is given as: $\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}$

(i) Obtain thevenin's equivalent circuit by placing $R_{T H}$ in series with $V_{O C}$
(ii) Reconnect R_{L} across the load terminals.

5.1.2 Thevenin's Equivalent Network

$I($ Load current $)=\frac{V_{O C}}{R_{T H}+R_{L}}$

If only dependent sources are present in circuit, $R_{T h}=\frac{V_{\text {test }}}{1_{\text {test }}} ; I_{\text {test }}=1 A$
$\mathrm{V}_{\text {test }}$ is calculated across the load by short circuiting it, and current of 1 A flows through the short circuited branch as $I_{\text {test }}$. Then $R_{T H}=V_{\text {test }}$
CHAPTER - 6
TRANSIENT ANALYSIS

6.1 INTRODUCTION

1. Linear differential equation with constant coefficient obey linearity \& superposition theorem.
2. The response of a network excited by a initial energy storage and then left undisturbed is a characteristic of network as with the passage of time networks comes to zero response. This is called natural behavior or its transient response or force +ve behavior. The natural behavior is solution of the network's differential equation with all the sources equated to zero.
3. The response of a network to excitation by an impulse source is very similar to natural behavior. After $\mathrm{t}=0^{+}$
The impulse response \equiv natural behavior.
4. For forced response steady state value will not be zero. Than steady state value are calculated.

Complete solution $=$ natural behavior + forced solution
Or transient + steady state
Or complementary function + particular integer

6.2 NATURAL BEHAVIOR OF R-L CIRCUIT

Let the initial current in the inductor is I_{0} and the inductor is connected to resistance in series so that inductor discharges. As shown in the figure

Writing KVL in the loop
$\frac{\mathrm{Ldi}}{\mathrm{dt}}+\mathrm{Ri}=0$
The possible solutions for current (i) is
$\mathrm{i}(\mathrm{t})=\mathrm{ke}^{\mathrm{st}}, \quad$ where k is constant
Putting this value in equation (i)
$\mathrm{L} \frac{\mathrm{d}\left(\mathrm{ke}^{\mathrm{st}}\right)}{\mathrm{dt}}+\mathrm{Rke}^{\mathrm{st}}=0$
$\Rightarrow \mathrm{ksLe}^{\mathrm{st}}+\mathrm{Rke}^{\mathrm{st}}=0$
$\Rightarrow \mathrm{sL}+\mathrm{R}=0$
$\Rightarrow \mathrm{s}+\frac{\mathrm{R}}{\mathrm{L}}=0$
Equation (ii) is the characteristic equation of series R-L circuit.
From equation (ii), $s=-\frac{R}{L}$

ASSSGGNMENG

1. The switch S is closed at $t=0$. The rate of change of current $\frac{\mathrm{di}}{\mathrm{dt}}\left(0^{+}\right)$is given by

(a) $1 \mathrm{~A} / \mathrm{sec}$
(b) $5 \mathrm{~A} / \mathrm{sec}$
(c) $2.5 \mathrm{~A} / \mathrm{sec}$
(d) $3 \mathrm{~A} / \mathrm{sec}$
2. A capacitor with some initial voltage can be represented by the shown figure. Where s is laplace transform variable. The value of initial voltage is

(a) 0.5 V
(b) 2.0 V
(c) 1.0 V
(d) 0 V
3. A LTI system has an impulse response $\mathrm{e}-^{2 \mathrm{t}}$ for $\mathrm{t}>0$. If initial conditions are 0 and the input is $\mathrm{e}^{-3 \mathrm{t}}$, the output for $\mathrm{t}>0$ is
(a) $e^{-2 t}-e^{3 t}$
(b) $e^{-2 t}-e^{-3 t}$
(c) $e^{-5 t}$
(d) None of these
4. Consider the network shown below, if the voltage V at a time is 20 V , then $\mathrm{dV} / \mathrm{dt}$ at that time will be

(a) $1 \mathrm{~V} / \mathrm{s}$
(b) $-2 \mathrm{~V} / \mathrm{s}$
(c) $3 \mathrm{~V} / \mathrm{s}$
(d) $-4 \mathrm{~V} / \mathrm{s}$
5. In the circuit shown below, the switch S is open for a long time and closed at $\mathrm{t}=0$

The value of I at $\mathrm{t}=0^{+}$is
(a) -6 A
(b) $-\frac{3}{2} \mathrm{~A}$
(c) 3 A
(d) $\frac{3}{2} \mathrm{~A}$
6. $\frac{\mathrm{R}}{\mathrm{L}}$ has the unit of
(a) Farad
(b) Farad 2
(c) sec^{-1}
(d) sec
7. For the circuit shown, the switch is closed at t $=0$ (after having been open for a very long time). The current $i(t)$ is given by (for $t \geq 0$)

(a) $i(t)=10\left(1-\mathrm{e}^{-5 t}\right) \mathrm{mA}$
(b) $i(t)=\left(12-\mathrm{e}^{-5 t}\right) \mathrm{mA}$
(c) $i(t)=\left(10-e^{-10 t}\right) m A$
(d) $i(t)=\left(2 e^{-15 t}\right) m A$

Common Data for Q. 8 to Q. 10

Switch is opened at $t=0$

CHAPTER - 7

7.1 LAPLACE TRANSFORMATION

The Laplace transformation of a function $f(\mathrm{t})$ is defined as
$\mathrm{F}(\mathrm{s})=\operatorname{Lf}(\mathrm{t})=\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \mathrm{e}^{-\mathrm{st}} \mathrm{dt}$
Where as in complex frequency
s being the intermediate or transformation variable.
7.1.1 Laplace Transform of a Derivative $\left[\frac{d f(t)}{d t}\right]$
$L f^{\prime}(t)=s F(s)-f(0+)$
7.1.2 Laplace Transform of an Integral $\int f(t) d t$
$\mathrm{L}\left(\int \mathrm{f}(\mathrm{t}) \mathrm{dt}\right)=\left.\frac{1}{\mathrm{~S}} \int \mathrm{f}(\mathrm{t}) \mathrm{dt}\right|_{0+}+\frac{1}{\mathrm{~S}} \mathrm{~F}(\mathrm{~s})$
$\left[\left.\int f(t)\right|_{0+}\right.$ gives the value of the integral at $\left.t=0+\right]$

7.1.3 Frequency Shifting

$L\left(e^{a t} f(t)\right)=F(s-a)$
$L\left(e^{-a t} f(t)\right)=F(s+a)$
7.2 LAPLACE TRANSFORM OF COMMON FORCING FUNCTIONS

$\boldsymbol{f (t)}$	$\mathbf{F}(\mathbf{s})$	$\boldsymbol{f (t)}$	$\mathbf{F (s)}$
$u(t)$	$\frac{1}{\mathrm{~s}}$	$\mathrm{e}^{-\alpha \mathrm{t}} \mathrm{t}^{\mathrm{n}}$	$\frac{\underline{\mathrm{n}}}{(\mathrm{s}+\alpha)^{\mathrm{n}+1}}$
$\mathrm{e}^{-\alpha \mathrm{t}}$	$\frac{1}{\mathrm{~s}+\alpha}$	$\mathrm{e}^{-\alpha \mathrm{t}} \sin \omega \mathrm{t}$	$\frac{\omega}{(\mathrm{s}+\alpha)^{2}+\omega^{2}}$
$\sin \omega \mathrm{t}$	$\frac{\omega}{\mathrm{s}^{2}+\omega^{2}}$	$\mathrm{e}^{-\alpha \mathrm{t}} \cos \omega \mathrm{t}$	$\frac{\mathrm{s}+\mathrm{a}}{(\mathrm{s}+\alpha)^{2}+\omega^{2}}$
$\cos \omega \mathrm{t}$	$\frac{\omega}{\mathrm{s}^{2}+\omega^{2}}$	$\delta(\mathrm{t})$	1
t	$\frac{1}{\mathrm{~s}^{2}}$	$\operatorname{Sinh} \theta \mathrm{t}$	$\frac{\theta}{\mathrm{s}^{2}-\theta^{2}}$

CHAPTER - 8

RESONANCE

8.1 RESONANCE

Resonance in electrical circuits consisting of passive and active elements represents a particular state of the circuit when the current or voltage in the circuit is maximum or minimum with respect to the magnitude of excitation at a particular frequency, the circuit impedance being either minimum of maximum at the power factor unity.
The phenomenon of resonance is observed in both series or parallel a.c. circuits comprising of R, L and C and excited by an a.c. source.

8.2 SERIES RESONANCE

$Z_{\text {in }}=\frac{V}{I}=R+j\left(\omega L-\frac{1}{\omega c}\right)$
For resonance V \& I must be in same phase
So for some frequency $\omega=\omega_{0}$
$Z_{\text {in }}=R+j_{0} \Rightarrow \omega_{0} L-\frac{1}{\omega_{0} C}=0 \Rightarrow \omega_{0}=\frac{1}{\sqrt{\text { LC }}}$
$I=\frac{V}{|z|}=\frac{V}{\sqrt{R^{2}+(\omega \mathrm{L}-1 / \omega c)^{2}}}$ at $\omega_{0}, I=\frac{V}{R}$

Points A \& B are half power or 3 dB points because $20 \log _{10}\left(\frac{1}{2}\right)=3 \mathrm{~dB}$
Band width of circuit $\Delta \omega=\mathrm{BW}=\omega_{2}-\omega_{1}$
Quality factor
$Q_{0}=2 \pi\left[\frac{\text { Max energy stored }}{\text { Total energy last per perior }}\right]$
$\mathrm{Q}_{0}=2 \pi\left[\frac{\omega_{\mathrm{L}}+\omega_{\mathrm{C}}}{\mathrm{P}_{\mathrm{R}} \mathrm{T}}\right]$

1. For the circuit given in the figure, the voltage V_{C} (in volts) across the capacitor is

[GATE - 2018]
(a) $1.25 \sqrt{2} \sin (5 t-0.25 \pi)$
(b) $1.25 \sqrt{2} \sin (5 t-0.125 \pi)$
(c) $2.5 \sqrt{2} \sin (5 t-0.25 \pi)$
(d) $2.5 \sqrt{2} \sin (5 t-0.125 \pi)$
2. In the balanced 3-phase, 50 Hz , circuit shown below, the value of inductance (L) is 10 mH . The value of the capacitance (C) for which all the line currents are zero, in millifarads, is
\qquad .

[GATE - 2016]
3. The circuit below is excited by a sinusoidal source. The value of R, in Ω for which the admittance of the circuit becomes a pure conductance at all frequencies is \qquad -.

[GATE - 2016]
4. A series RLC circuit is observed at two frequencies. At $\omega_{1}=1 \mathrm{krad} / \mathrm{s}$, are note that source voltage $\mathrm{V}_{1}=100 \angle 0^{\circ} \mathrm{V}$ result in a current $\mathrm{I}_{1}=0.03 \angle 31^{\circ} \mathrm{A}$. At $\omega_{2}=2 \mathrm{krad} / \mathrm{s}$, the source voltage $\mathrm{V}_{2}=100 \angle 0^{\circ} \mathrm{V}$ results in a current $\mathrm{I}_{2}=2 \angle 0^{\circ} \mathrm{A}$. The closest values for $\mathrm{R}, \mathrm{L}, \mathrm{C}$ out of the following options are
[GATE - 2014]
(a) $\mathrm{R}=50 \Omega ; \mathrm{L}=25 \mathrm{mH} ; \mathrm{C}=10 \mu \mathrm{~F}$;
(b) $\mathrm{R}=50 \Omega ; \mathrm{L}=10 \mathrm{mH} ; \mathrm{C}=25 \mu \mathrm{~F}$;
(c) $\mathrm{R}=50 \Omega ; \mathrm{L}=50 \mathrm{mH} ; \mathrm{C}=5 \mu \mathrm{~F}$;
(d) $\mathrm{R}=50 \Omega ; \mathrm{L}=5 \mathrm{mH} ; \mathrm{C}=50 \mu \mathrm{~F}$;
5. Two magnetically uncoupled inductive coils have Q factors q_{1} and q_{2} at the chosen operating frequency. Their respective resistances are R_{1} and R_{2}. When connected in series, t heir effective Q factor at the same operating frequency is
[GATE - 2013]
(a) $\mathrm{q}_{1}+\mathrm{q}_{2}$
(b) $\left(1 / q_{1}\right)+\left(1+q_{2}\right)$
(c) $\left(\mathrm{q}_{1} \mathrm{R}_{1}+\mathrm{q}_{2} \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
(d) $\left(q_{1} R_{2}+q_{2} R_{1}\right) /\left(R_{1}+R_{2}\right)$
6. For parallel RLC circuit, which one of the following statements is NOT correct?
[GATE - 2010]
(a)The bandwidth of the circuit decreases if R is increased
(b)The bandwidth of the circuit remains same if L is increased
(c)At resonance, input impedance is a real quantity
(d)At resonance, the magnitude of input impedance attains its minimum value
7. The resonant frequency for the given circuit will be

CHAPTER - 9

TWO PORT NETWORKS

9.1 INTRODUCTION

The terminal pair is called as a "port". If the current entering one terminal of a pair is equal and opposite to the current leaving the other terminal of the pair.

9.2 TWO-PORT NETWORK

A two-port network is shown, by which we observe that a two-port network is represented by a black box with four variables, namely, two voltages $\left(V_{1}, V_{2}\right)$ and two currents $\left(I_{1}, I_{2}\right)$ which are available for measurements and are relevant for the analysis of two port networks. Of these four variables which two variable may be considered `independent` and which two `dependent` is generally decided by the probable under consideration

Two Port Parameters			
Name	Express	In terms of	Matrix Equation
Open circuit impedance [Z]	$\mathrm{V}_{1}, \mathrm{~V}_{2}$	$\mathrm{I}_{1}, \mathrm{I}_{2}$	$\left[\begin{array}{l}\mathrm{V}_{1} \\ \mathrm{~V}_{2}\end{array}\right]=\left[\begin{array}{l}\mathrm{Z}_{11} \mathrm{Z}_{12} \\ \mathrm{Z}_{21} \mathrm{Z}_{22}\end{array}\right]\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]$
Short-circuit admittance [Y]	$\mathrm{I}_{1}, \mathrm{I}_{2}$	$\mathrm{~V}_{1}, \mathrm{~V}_{2}$	$\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{ll}\mathrm{Y}_{11} & \mathrm{Y}_{12} \\ \mathrm{Y}_{21} & \mathrm{Y}_{22}\end{array}\right]\left[\begin{array}{l}\mathrm{V}_{1} \\ \mathrm{~V}_{2}\end{array}\right]$
Transmission or Chain [T] or [ABCD]	$\mathrm{V}_{1}, \mathrm{I}_{2}$	$\mathrm{~V}_{2}, \mathrm{I}_{2}$	$\left[\begin{array}{l}\mathrm{V}_{1} \\ \mathrm{I}_{1}\end{array}\right]=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C}\end{array}\right]\left[\begin{array}{l}\mathrm{V}_{2} \\ -\mathrm{I}_{2}\end{array}\right]$
Inverse Transmission [T']	$\mathrm{V}_{2}, \mathrm{I}_{2}$	$\mathrm{~V}_{1},-\mathrm{I}_{1}$	$\left[\begin{array}{l}\mathrm{V}_{2} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{l}\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\ \mathrm{C}^{\prime} \mathrm{D}^{\prime}\end{array}\right]\left[\begin{array}{l}\mathrm{V}_{1} \\ -\mathrm{I}_{1}\end{array}\right]$
Hybrid (h)			$\left[\begin{array}{l}\mathrm{V}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{ll}\mathrm{h}_{11} \mathrm{~h}_{12} \\ \mathrm{~h}_{21} \mathrm{~h}_{22}\end{array}\right]\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{~V}_{2}\end{array}\right]$
Inverse hybrid (g)	$\mathrm{I}_{1}, \mathrm{~V}_{2}$	$\mathrm{~V}_{1}, \mathrm{I}_{2}$	$\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{~V}_{2}\end{array}\right]=\left[\begin{array}{l}\mathrm{g}_{11} \mathrm{~h}_{12} \\ \mathrm{~g}_{21} \mathrm{~h}_{22}\end{array}\right]\left[\begin{array}{l}\mathrm{V}_{1} \\ \mathrm{I}_{2}\end{array}\right]$

9.3 OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

Expressing two-port voltages in terms of two-port currents
$\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)=\mathrm{f}\left(\mathrm{I}_{1}, \mathrm{I}_{2}\right)$

10.1 IMPORTANT DEFINITIONS

1. Graph: It is the collection of nodes and Branch of a network.

(A)

(B)
2. Branch: Each oriented line segment of the graph is called branch.
3. Node: The end point of a branch is called node.
4. Incident Branch: Branch whose end fall on a node is called incident branch.

5. Connected and Non-Connected Graph

If there exists a path between every pair of nodes of a graph, then the graph is called connected graph, otherwise graph is called non-connected graph.
6. Degree of Node: Degree of Node is the number of branches incident on the node.
7. Subgraph: A portion of graph is called subgraph
8. Path: Path is transverse from one node to another node
9. Loop: Loop is a collection of branches in a graph which form a closed path.
10. Tree: The collection of minimum no. of branches connecting all the nodes of a graph without making a loop.
A single graph can have many no. of trees.
The no. of trees for a given graph $=\mathrm{n}-1$
where $\mathrm{n} \rightarrow$ no. of nodes
11. Twig: Branch of a tree is called a twig.
12. Cotree: Remaining part of a graph after removal of twigs is called cotree. It is collection of links.
13. Links: are the branches removed from the graph to make a tree.

Total no. of branch of a graph are given by $b=(n-1)+L$
n is no. of nodes
L is No. of links

ASSIGNMENT

1. For a given network, the incidence matrix is given by

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

The series branches in the graph are
(a) 3 and 4
(b) 3 and 5
(c) 6 and 4
(d) 3 and 6
2. In Q. 1, the parallel branches are
(a) 3 and 5
(b) 4 and 5
(c) 3 and 6
(d) None
3. Of the graph shown in below, which of the following is NOT a tree?

(a)

(b)

4. If a graph of network has 10 branches and 6 nodes, then number of mesh equations or KVL equation required to solve the network are
(a) 4
(b) 5
(c) 6
(d) 7
5. Of the graph shown in the figure below, the no. of possible trees is/are

(b) 2
(a) 1
(d) 4
6. For given network, the incidence matrix is given by

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

If $\mathrm{i}_{2}=2 \mathrm{~A}, \mathrm{i}_{4}=4 \mathrm{~A}, \mathrm{i}_{5} \quad 2 \mathrm{~A}$, where i_{k} represents current $K^{\text {th }}$ branches, then i_{6} is given by:
(a) 4 A
(b) 2 A
(c) 0 A
(d) 6 A
7. If the reduced incidence matrix of a given network is given as below, then the no. of possible trees are

$$
A=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

(a) 10
(b) 12
(c) 14
(d) 16
8. This is a network graph. The degree of the nodes $1,2,3,4$ is

(a) 2
(b) 3
(c) 2 for 1, 2, 3 and 3 for 4
(d) All 3

GATE QUESTIONS

1. In the following graph, the number of trees (P) and the number of cut - set (Q) are

[GATE - 2008]
(a) $P=2, Q=2$
(b) $P=2, Q=6$
(c) $P=4, Q=6$
(d) $P=4, Q=10$
2. The number of chords in the graph of the given circuit will be

[GATE - 2008]
(a) 3
(b) 4
(c) 5
(d) 6
3. The matrix A given below in the node incidence matrix of a network. The columns correspond to branches of the network while the rows correspond to nodes. Let $\mathrm{V}=$ $\left[V_{1} V_{2} \ldots \ldots . V_{6}\right]^{T}$ denote the vector of branch voltage while $I=\left[i_{1} i_{2} \ldots i_{6}\right]^{T}$ that of branch currents. The vector $E=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & e_{4}\end{array}\right]^{\mathrm{T}}$ denotes the vector of node voltage relative to a common ground.

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 1 & 0 & 1
\end{array}\right]
$$

Which of the following statement is true?
[GATE - 2007]
(a) The equation $V_{1}-V_{2}+V_{3}=0, V_{3}+V_{4}-V^{5}$ $-V_{5}=0$ are KVL equation for the network for some loops
(b) The equations $\mathrm{V}_{1}-\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{6}=0, \mathrm{~V}_{4}+\mathrm{V}_{5}-$ $\mathrm{V}_{6}=0$ are KVL equations for the network for some loops
(c) $\mathrm{E}=\mathrm{AV}$
(d) $A V=0$ are KVI equations for the network
4. Consider the network graph shown in the figure. Which one of ht following is NOT a 'tree' of this graph?
(a)
(b)

(c)

(d)

[GATE - 2004]
(a) a
(b) b
(c) c
(d) d
5. The minimum number of equations required to analyze the circuit shown in the figure is

ESE OBJ QUESTIONS

1. Consider the following statements regarding trees:
2. A tree contains all the nodes of the graph.
3. A tree shall contain any one of the loops.
4. Every connected graph has at least one tree. Which of the above statements are correct?
[EC ESE - 2017]
(a) 1 and 2 only
(b) 1 and 3 only
(c) 2 and 3 only
(d) 1, 2 and 3
5. Consider the following with regards to graph as shown in the figure given below:

6. Regular graph
7. Connected graph
8. Complete graph
9. Non-regular graph

Which of the above are correct ?
[EC ESE - 2017]
(a) 1 and 4
(b) 3 and 4
(c) 2 and 3
(d) 1 and 2
3. If Q_{1} and Q_{2} be the sub-matrices of Q_{f} (fundamental cut-set matrix) corresponding to twigs and links of a connected graph respectively, then

1. Q_{t} is an identity matrix.
2. Q_{t} is a rectangular matrix
3. Q_{f} is of $\operatorname{rank}(\mathrm{n}-1)$

Which of the above are correct?
[EE ESE - 2014]
(a) 1 and 2 only
(b) 1 and 3 only
(c) 2 and 3 only
(d) 1, 2 and 3
4. For the oriented graph as given above, taking $4,5,6$ as tree branches the tie set matrix is

[EE ESE - 2013]
(a) $\left[\begin{array}{cccccc}-1 & 0 & 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 & 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 & 1\end{array}\right]$
(c)
c) $\left[\begin{array}{cccccc}1 & -1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 & -1\end{array}\right]$
(d) $\left[\begin{array}{cccccc}-1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1\end{array}\right]$
5. For a given connected network and for a fixed tree, the fundamental loop matrix is given by
$B=\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & -1 & -1\end{array}\right]$
The fundamental cut-set matrix Q corresponding to the same tree is given by
[EC ESE - 2012]
(a) $Q=\left[\begin{array}{cccccc}-1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
(b) $\mathrm{Q}=\left[\begin{array}{cccccc}-1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

CHAPTER - 11

NETWORK FUNCTIONS

11.1 INTRODUCTION

The basic definition of one port and two port network being discussed earlier, here we will discuss about the transform of excitation and response along with their relations. A network function exhibits the relationship between the transform of the source or excitation to the transform of the response for a electrical network. Further to this, we will discuss the stability of the network function mathematically formulating the network function mathematically formulating the network function through "pole-zero" concept.
11.2 DRIVING POINT IMPEDANCE AND ADMITTANCE

The driving point impedance of a one port network is defined as
$Z(s)=\frac{V(s)}{I(s)}$
While the driving point admittance is given as
$Y(s)=\frac{I(s)}{V(s)}$
For the one port network
Similarly, for the two port network, the driving point impedance and admittance at port 1 is defined as
$\mathrm{Z}_{11}(\mathrm{~s})=\frac{\mathrm{V}_{1}(\mathrm{~s})}{\mathrm{I}_{1}(\mathrm{~s})}$
and $\mathrm{Y}_{11}(\mathrm{~s})=\frac{\mathrm{I}_{1}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}$
While the driving point impedance and admittance at the port 2 are designated as
$\mathrm{Z}_{22}(\mathrm{~s})=\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{I}_{2}(\mathrm{~s})}$
and $Y_{22}(\mathrm{~s})=\frac{\mathrm{I}_{2}(\mathrm{~s})}{\mathrm{V}_{2}(\mathrm{~s})}$

11.3 TRANSFER IMPEDANCE AND ADMITTANCE

Transfer impedance is defined as the ratio of transform voltage at output port to the transformed current at the input port of a two port network.
This gives, $Z_{12}(s)=\frac{V_{2}(s)}{I_{1}(s)}$
In a similar way, the transfer admittance is defined as the ratio of current transform at output port to the voltage transform at the input port. It is given as
$\mathrm{Y}_{12}(\mathrm{~s})=\frac{\mathrm{I}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}$

1. The driving point impedance $Z(s)$ for the circuit shown below is

[GATE - 2014]
(a) $\frac{s^{4}+3 s^{2}+1}{s^{3}+2 s}$
(b) $\frac{\mathrm{s}^{4}+2 \mathrm{~s}^{2}+4}{\mathrm{~s}^{2}+2}$
(c) $\frac{\mathrm{s}^{2}+1}{\mathrm{~s}^{4}+\mathrm{s}^{2}+1}$
(d) $\frac{\mathrm{s}^{3}+1}{\mathrm{~s}^{2}+\mathrm{s}^{2}+1}$
2. The transfer function $\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}$ of the circuit shown below is

(a) $\frac{0.5_{\mathrm{s}}+1}{\mathrm{~s}+1}$
(b) $\frac{3 s+6}{s+2}$
(c) $\frac{s+2}{s+1}$
(d) $\frac{s+1}{s+2}$
3. If the transfer function of the following network is

The value of the load resistance R_{L} is
[GATE - 2009]
(a) $\frac{R}{4}$
(b) $\frac{R}{2}$
(c) R
(d) 2 R
4. The first and the last critical frequencies (singularities) of a driving pint impedance function of a passive network having kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
[GATE - 2006]
(a) RL network only
(b) RC network only
(c) LC network only
(d) RC as well as RL networks
5. In the figure shown below, assume that all the capacitors are initially uncharged. If $V_{i}(t)=10 u(t)$ Volts, $V_{0}(t)$ is given by

[GATE - 2006]
(a) $8 \mathrm{e}^{-\mathrm{t} / 0.004}$ Volts
(b) $8\left(1-\mathrm{e}^{-\mathrm{t} / 0.004}\right)$ Volts
(c) $8 \mathrm{u}(\mathrm{t})$ Volts
(d) 8 Volts
6. The first and the last critical frequency of an RC-driving point impedance function must respectively be
[GATE - 2006]

[^0]

POWER SYSTEM

ELECTRICAL ENGINEERING

ECG
Publications

A Unit of ENGINEERS CAREER GROUP

Head O ce: S.C. $0-80-81-82$, $3^{\text {rd }}$ oor, Sector-34/A, Chandigarh-160022
Website: www.engineerscareergroup.in
Toll Free: 1800-270-4242
E-Mail: ecgpublica ons@gmail.com | info@engineerscareergroup.in

GATE-2018: Power System| Detailed theory with GATE \& ESE previous year papers and detailed solu ons.
©Copyright @2016 by ECG Publica ons
(A unit of ENGINEERS CAREER GROUP)
All rights are reserved to reproduce the copy of this book in the form storage, introduced into a retrieval system, electronic, mechanical, photocopying, recording, screenshot or any other form without any prior wri en permission from ECG Publica ons (A Unit of ENGINEERS CAREER GROUP).

First Edi on: 2016
Price of Book: INR 730/-

ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) collected and proving data like: theory for di erent topics or previous year solu ons very carefully while publishing this book. If in any case inaccuracy or prin ng error may nd or occurred then ECG PUBLICATIONS (A Unit of ENGINEERS CAREER GROUP) owes no responsibility. The sugges ons for inaccuracies or prin ng error will always be welcome by us.

CONTENTTS

CHAPTER
PAGE

1. BASIC CONCEPTS 1-26
2. SINGLE LINE DIAGRAM 27-44
3. POWER GENERATION CONCPET 45-66
4. TRANSMISSION LINE PARAMETERS 67-86
5. CHARACTERISTICS AND PERFORMANCE OF POWER
6. TRANSMISSION LINE 87-120
7. INSULATED CABLES 121-129
8. OVERHEAD LINE INSULATORS 130-138
9. CORONA 139-145
10. DISTRIBUTION SYSTEMS 146-151
11. HIGH VOLTAGE DC TRANSMISSION (HVDC) 152-163
12. BASICS OF SYNCHRONOUS MACHINE 164-176
13. LOAD FLOW 177-200
14. VOLTAGE CONTROL 201-212
15. POWER FACTOR CORRECTION 213-220
16. ECONOMIC LOAD DISPATCH. 221-234
17. SYMMETRICAL COMPONENTS \& SEQUENCE NETWORKS 235-262
18. SYMMETRICAL FAULT ANALYSIS 263-273
19. UNSYMMETRICAL FAULT ANALYSIS 274-294
20. POWER SYSTEM PROTECTION 295-327
21. CIRCUIT BREAKERS 328-340
22. POWER SYSTEM STABILITY 341-372
23. LOAD FREQUENCY CONTROL 373-381

CHAPTER - 1

BASIC CONCEPTS

1.1 INTRODUCTION

1. In electrical engineering the energy is studied in reference to charge (Q). Voltage and current are basic electrical circuit variables.
Voltage is defined as work done on unit charge i.e. $V=\frac{d W}{d Q} J / C$ or volts. (V).
Current is defined as time rate of change of charge i.e $I=\frac{d Q}{d t} c / s$ or Ampere (A)
Now, $v \times \mathrm{i}=\frac{\mathrm{dW}}{\mathrm{dQ}} \times \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{dW}}{\mathrm{dt}}$
$\frac{d W}{d t}$ is time rate of charge of energy, which basically means power (p)
$\mathrm{p}(\mathrm{t})=v(\mathrm{t}) \times \mathrm{i}(\mathrm{t}) \mathrm{J} / \mathrm{s}$ or watts (w)
2. Current is taken positive in the direction of movement of positive charge and vice-versa.

The voltage at point $\mathrm{A}\left(\mathrm{V}_{\mathrm{A}}\right)$ is voltage with respect to ground.
The voltage between two points $V_{A B}$ is equal to $\left(V_{A}-V_{B}\right)$. Voltage $V_{A B}$ is positive if positive charge looses energy in moving from A to B or negative charge gains energy in moving from A to B.

To calculate $V_{A B}$ start from point B and go towards A, while doing so take voltage rises as positive and voltage drops as negative and add all such voltages.
3. The positive charge will have natural tendency to be repelled by positive charge and attracted by negative charge as shown in the figure (1.1), Q^{+}will naturally move towards B and the direction of current will be from A and B as shown figure (1.2). In this case charge is losing energy and device is getting energy from charge such devices are called passive elements or load. Power in this case in positive.

4. In figure (1.3) as shown below Q^{+}will have to be supply energy by external medium to move it from B to and direction of current will be from B to in this case charge is gaining energy and device is supplying energy such device are called active elements source or generator. Power in this case is negative.

ESE OBJ QUESTIONS

1. The three non-inductive loads of $5 \mathrm{~kW}, 3 \mathrm{~kW}$ and 2 kW are connected in a star network between R, Y and B phases and neutral. The line voltage is 400 V . The current in the neutral wire is nearly
[ESE - 2017]
(a) 11 A
(b) 14 A
(c) 17 A
(d) 21 A
2. A three-phase star-connected load is operating at a power factor angle ϕ with ϕ being the angle between
[ESE - 2017]
(a) Line voltage and line current
(b) Phase voltage and phase current
(c) Line voltage and phase current
(d) Phase voltage and line current
3. Consider the following statements regarding three-phase transformers in Open-Delta (V-V) connections;
1.Being a temporary remedy when one transformer forms of Delta-Delta system is damaged, and removed from service.
2.The Volt Ampere (VA) supplied by each transformer is half of the total VA, and the system is not overloaded.
3.An important precaution is that load shall be reduced by $\sqrt{3}$ times in this case.
Which of the above statements are correct?
[ESE - 2017]
(a) 1 and 2 only
(b) 1 and 3 only
(c) 2 and 3 only
(d) 1, 2 and 3
4. In a certain single-phase a.c. circuit the instantaneous voltage is given by
$v-V \sin \left(\omega t+30^{\circ}\right)$ p.u. and the instantaneous current is given by $i=\operatorname{Isin}\left(\omega \mathrm{t}-30^{\circ}\right)$ p.u. Hence the per unit value of reactive power is
[ESE - 2002]
(a) $1 / 4$
(b) $1 / 2$
(c) $\sqrt{3} / 4$
(d) $\sqrt{3} / 2$

CHAPTER - 2

SINGLE LINE DIAGRAM

2.1 INTRODUCTION

Power system is the study of generation, transmission and distribution of electric energy at very large scale.

2.2 TRANSMISSION NETWORK

1. Transmission network connect generating plants to consumption point. Transmission is always in 3- ϕ, generally done through over head lines.
2. Transmission network interconnects power pools which are part of grid. Inter connecting power pools has following advantages.
(i) It reduces generation reserve and cost
(ii) It increases reliability
3. Transmission is done at High Voltage (HV). HV transmission has following advantages.
(i) High Voltage for fixed amount of power will have low current which leads to less losses, loss voltage drop.
(ii) Due to reduction in current density conductor cross section area is reduced which leads to less material for same amount of power.
(iii) High voltage also increase power transferable limit and steady state limit.
4. HVAC is called synchronous link
5. HVDC is asynchronous link
6. Voltage levels for HVAC are $765 \mathrm{kv}, 400 \mathrm{kv}$, 220 kv and 132 kv . Voltage level $>220 \mathrm{kV}$ are extra High voltage (EHV) and voltage levels $\geq 760 \mathrm{kv}$ are ultra high voltage (UHV).
7. HVDC up to 500 kv is available in India.
8. High voltage needs expenditure on insulating equipments. Hence there is a limit of increasing voltage. High voltage also causes corona interference.
9. In transmission there are problems of corona loss, radio interference, voltage control, load frequency and problem of stability etc.
10. Transmission equipment are
(i) Step up power transformers
(ii) Step down power transformer
(iii) Power transformers are designed with high value of leakage reactance so as to reduce fault current.
(iv) Voltage regulators
(v) Phase shifters to control real power flow
(vi) Transmission lines
(vii) Shunt compensation to maintain voltage profile.

CHAPTER - 3

POWER GENERATION CONCEPT

3.1 INTRODUCTION

1. Load curve

Load curve is the variation of load during different hour of the day, shown on curve.

2. Maximum Demand

The peak load on system is called maximum demand.

3. Connected Load

The sum of the continuous rating of all electrical equipment connected to the supply system is know as connect load.

4. Average Load

Daily average load $=\frac{\mathrm{KWh} \text { supplied in day }}{24}$

5. Load Factor

Load factor $=\frac{\text { Average load }}{\max \text { imum demand }}$

6. Demand Factor

Demand factor $=\frac{\text { Maximum demand }}{\text { Connected load }}$

7. Diversity Factor

Diversity factor $=\frac{\text { Sum of individual max demand }}{\text { max demand of power system }}$

8. Plant Capacity Factor

Capcity or plant factor $=\frac{\text { Averge demand }}{\text { Ratge capacity of plant }}$

9. Plant Use Factor

Plant operating or use factor $=\frac{\text { Total kwh generated }}{\text { Rated capacity } \times \text { number of operating hrs }}$

CHAPTER - 4

TRANSMISSION LINE PARAMETERS

4.1 INTRODUCTION

4.1.1 Resistance

$\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}$
Where ρ is the resistivity of conductor
ℓ is length of conductor
A is cross sectional area
Resistance changes with temperature
$\mathrm{R}_{\mathrm{T}_{2}}=\mathrm{R}_{\mathrm{T}_{1}}\left[1+\alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ are temperature is ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{T}_{1}}$ is resistance at temperature T_{1}
$R_{T_{2}}$ is resistance at temperature T_{2}
α is temperature coefficient of resistance in $\Omega /{ }^{\circ} \mathrm{C}$

4.1.2 Inductance of line

AC flux linkages
$\lambda=\mathrm{N} \phi=\mathrm{L} \mathrm{I}$
Where $\lambda \&$ I are in rms
$\mathrm{d} \lambda=\mathrm{Nd} \phi$
Voltage inducted due to alternating flux linkages
$\mathrm{V}(\mathrm{t})=\frac{\mathrm{d} \lambda}{\mathrm{dt}}$
In frequency domain
$\mathrm{V}=\mathrm{j} \omega \lambda=\mathrm{j} \omega \mathrm{LI}$
The mutual inductance M_{12} is defined as flux linkages of 1 due to current of 2 as follows
$\mathrm{M}_{12}=\frac{\lambda_{12}}{\mathrm{I}_{2}}$
Voltage drop in circuit 1 due to current in circuits $V_{1}=j \omega \lambda_{12}=j \omega M_{12} I_{2}$

4.1.3 Flux linkages and Inductance of Current carrying Conductor

CHAPTER - 5

CHARACTERISTICS AND PERFORMANCE OF POWER TRANSMISSION LINE

5.1 INTRODUCTION

Transmission line can be studies on phase basis under balanced conditions, in this case transmission line can be regarded as two port network. Input port is sending and output port is receiving end.

For transmission line parameter are
$\mathrm{V}_{1}=\mathrm{AV}_{2}-\mathrm{BI}_{2}$
$\mathrm{I}_{1}=\mathrm{CV}_{2}-\mathrm{DI}_{2}$
Here,
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{S}}$ and $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{s}}$
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{R}} \quad \mathrm{I}_{2}=\mathrm{I}_{\mathrm{R}}$
Condition for symmetry
$\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}\right|_{\mathrm{I}_{2}=0}=\left.\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}\right|_{\mathrm{I}_{1}=0}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{C}}=\frac{\mathrm{D}}{\mathrm{C}}$
$\Rightarrow \mathrm{A}=\mathrm{D}$

5.2 CONDITION FOR RECIPROCITY

$$
\mathrm{V}_{\mathrm{s}}=+\mathrm{BI}_{2}^{\prime}
$$

$$
\begin{aligned}
& -\mathrm{I}_{1}^{\prime}=\mathrm{CV}_{\mathrm{s}}-\frac{\mathrm{A}}{\mathrm{D}} \mathrm{~V}_{\mathrm{s}} \\
& \Rightarrow \mathrm{I}_{1}^{\prime}=-\mathrm{CV}_{\mathrm{S}}+\frac{\mathrm{AD}}{\mathrm{~B}} \mathrm{~V}_{\mathrm{S}}
\end{aligned}
$$

For reciprocity $I_{2}^{\prime}=I_{1}^{\prime} \Rightarrow \frac{V_{s}}{B}=\frac{A D-B C}{B} V_{s} \Rightarrow A D-B C=1$
$\%$ Efficiency of line $=\frac{\text { Power delivered at receving end }}{\text { Power sent from sending end }} \times 100$
$\%$ Regulation of line $=\frac{\mathrm{V}_{\mathrm{r} 0}-\mathrm{V}_{\mathrm{r}}}{\mathrm{V}_{\mathrm{r}}} \times 100$
When $V_{\mathrm{T}_{0}}$ is receiving end voltage at no load

CHAPTER - 6

INSULATED CABLES

6.1 INTRODUCTION

6.1.1 Electric Cables Consist

1. Conductor for transmitting power
2. Insulation to insulate conductor from direct contact with earth.
3. External protection from mechanical damage etc.
6.1.2 Various Insulting Materials used For Cables
4. Vulcanized Rubber: used for wiring of houses etc for low power usage.
5. Butyl Rubber: More tough can be used for cables without sheath.
6. Neoprene: Used for sheathing material.
7. Poly vinyle chloride PVC:
8. Polythene used for high frequency
9. Impregnated paper
(i) Protective Coverings

These are to protect cable like lead alloy sheath, steel tapes, steel wires etc.

(ii) Electrostatic Stress in Single Core Cable

$\mathrm{E}=\mathrm{g}=\frac{\mathrm{q}}{2 \pi \in \mathrm{x}}$
$V=\int_{r}^{R} E \cdot d x$
$=\frac{\mathrm{q}}{2 \pi \in} \ln \frac{\mathrm{R}}{\mathrm{r}}$
$\mathrm{g}=\frac{\mathrm{V}}{\mathrm{x} \ln (\mathrm{R} / \mathrm{r})}$
g will be maximum at the surface of conductor i.e. $x=r$
$g_{\max }=\frac{V}{r \ln \frac{R}{r}}$
Gradient is minimum at the inner radius of the sheath

CHAPTER - 7

OVERHEAD LINE INSULATORS

7.1 INTRODUCTION

The insulators for overhead lines provide insulation to the power conductor from ground mainly made by glazed porcelain or toughened glass.

7.1.1 Types

1. Pin type

It is used up to 33 kv

2. Suspension type

(i) Each insulator is designed for say 11 kv and for higher operating voltages string of insulator disc is used.
(ii) In case of failure of one disc (string) only that need to be replaced.

3. Strain type

These are placed horizontally. These are used to take tension of conductors at line terminals, road crossings etc. They are also known as tension insulators.

4. Shackle type

Used for voltage $<11 \mathrm{kV}$

7.2 VOLTAGE DISTRIBUTION OVER A STRING OF SUSPENSION INSULATOR

Capacitances are formed between insulator strings and between string and metal parts of structure which causes unequal voltage distribution across strings.

At junction n
$\mathrm{I}_{\mathrm{n}+1}=\mathrm{I}_{\mathrm{c}_{\mathrm{n}}}+\mathrm{I}_{\mathrm{n}}$

CHAPTER - 8

CORONA

8.1 INTRODUCTION

Corona phenomenon is defined as self sustained electric discharge in which the field intensified ionization is localized over a portion of distance between electrodes.
When potential between conductors is increased the gradient around the surface of conductor increases above a voltage higher than critical voltage the nearby air is ionized and there is bluish white glow around the surface of conductor. A hissing noise is also heard along with formation of ozone gas.

8.2 CRITICAL DISRUPTIVE VOLTAGE

Gradient at x
$E_{x}=\frac{q}{2 \pi \epsilon_{0}}\left[\frac{1}{x}+\frac{1}{d-x}\right]$ and $V_{a b}=\frac{q}{\pi \epsilon_{0}} \ln \frac{d}{r}$
After solving
$E_{x}=\frac{V d}{x(d-x) \ln d / r}$ where v in line to neutral voltage $V=\frac{V_{a b}}{2}$
Gradient is max when $x=r$
$g_{\text {max }}=E_{r}=E_{\text {max }}=\frac{V d}{r(d-r) \ln (d / r)}$
$=\frac{\mathrm{V}}{\mathrm{r} \ln \mathrm{d} / \mathrm{r}}$
or $\mathrm{V}=\mathrm{rg}_{\text {max }} \ln \mathrm{d} / \mathrm{r}$
Critical disruptive voltage is the voltage at which disruption or break down of dielectric occurs.
This voltage corresponds to the gradient at the surface of conductor equal to strength of air.
The deflective strength of air at $25^{\circ} \mathrm{C}$ and 76 cm of Hg pressure is
$\mathrm{g}_{0}=30 \mathrm{kV} / \mathrm{cm}$ Peak
At other temperature or pressure
$\mathrm{g}_{0}^{\prime}=\mathrm{g}_{0} \delta$
$\delta=\frac{3.92 \mathrm{~b}}{273+\theta}$, where δ is called air density factor.
Where b is pressure in cm of Hg and θ is temperature in ${ }^{\circ} \mathrm{C}$

CHAPTER - 9

DISTRIBUTION SYSTEMS

9.1 INTRODUCTION

The conductor system by means of which electrical energy is converted from bulk power source to consumers is known as distribution system. Primary distribution is at voltage levels of $11 \mathrm{kV}, 6.6$ kV and 3.3 kV and gives power to bulk consumers like industries.
Secondary distribution supply power to households at $400 \mathrm{~V}, 3-\phi$ and 230 V , single phase.
The main criteria for designing of conductors for distribution are voltage drop and current carrying capacity.

9.1.1 Classification

Distribution systems are classified as per following

Inter connected ring main

9.1.2 Uniform Loading

Load in considered uniformly distributed along the length of feeder. For feeder having equal voltage at both ends point of minimum voltage is centre of the feeder.

Max voltage drop from A that $V_{A C}=\frac{2 r 1^{2}}{8}=\frac{I R}{8}$
i is current in A / m
r is resistance Ω / m
1 is the length of feeder
$\mathrm{I}=\mathrm{il}$
$\mathrm{R}=\mathrm{rl}$
Minimum voltage $\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{A}}-\mathrm{IR}}{8}$

CHAPTER - 10

HIGH VOLTAGE DC TRANSMISSION (HVDC)

10.1 INTRODUCTION

HVDC transmission consists of two converter stations rectifier and inverter connected to each other by DC cable or overhead line. Main components and arrangement of HVDC transmission is shown below.

Converter station

Transformer provides suitable voltage ratio to achieve the desired direct voltage, transformer also provide electrical separation between DC and AC systems.
DC line inductor also called smoothing inductor is used to reduce harmonics in current on DC side.
The control of converters introduces phase shift between current and voltage. Thus reactive power is consumed by converters; converter transformers two consume reactive power. This reactive power demand is almost $50-60 \%$ of transmitted reactive power. This reactive power at converter stations is supplied by shunt capacitor.

10.1.1 Principle of HVDC Control

BASICS OF SYNCHRONOUS MACHINE \& R-L CIRCUIT TRANSIENT

11.1 INTRODUCTION

1. When three windings are placed at 120° to each other in space and supply of $3-\phi$, displaced 120° in time to each other is given to such windings than a rotating magnetic field is produced which rotates with synchronous speed in the direction of positive sequence. The synchronous speed.
$N_{s}=\frac{120 \mathrm{f}}{\mathrm{P}}$
Where f is frequency of supply and P is no of poles

2. If a conductor moves in a magnetic field than emf is induced in the conductor and if closed path is provided than due to emf current will start to flow in the conductor. The direction of current can be found by Fleming's Right Hand Rule.
According to Fleming's Right Hand Rule. Put the thumb of Right Hand in the direction of Force on conductor. The index figure shall be in the direction of magnetic field then middle figure will show direction of current induced.

The synchronous generator has 3- ϕ winding uniformly distributed in slots of stator. The winding are displaced in space 120° to each other.
The rotor is either cylindrical or salient pole type. The rotor is excited By D.C current. The rotor is made to run by prime mover.

CHAPTER - 12

LOAD FLOW

12.1 INTRODUCTION

Load flow is steady state solution of power system network. Load is considered as complex power and not as impedance. The variables are $\mathrm{P}, \mathrm{Q},|\mathrm{V}| \& \delta$ at various buses as per nature of bus.
Load flow is useful for monitoring power system and for future planning.
Power injection at $\mathrm{i}^{\text {th }}$ bus $\mathrm{S}_{\mathrm{i}}=\mathrm{S}_{\mathrm{Gi}}-\mathrm{S}_{\mathrm{Di}}$
Where S_{Gi} is generation at $\mathrm{i}^{\text {th }}$ bus and S_{Di} is demand at that bus.
In general current injection at $i^{\text {th }}$ bus is
$\mathrm{I}_{\mathrm{i}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{ik}} \mathrm{V}_{\mathrm{k}} \mathrm{i}$
Where $\mathrm{Y}_{\mathrm{ik}}=-\mathrm{y}_{\mathrm{ik}} \quad(\mathrm{i} \neq \mathrm{k})$; where y_{ik} is admittance between $\mathrm{i}^{\text {th }} \& \mathrm{k}^{\text {th }}$ bus
$\mathrm{Y}_{\mathrm{ik}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{ik}}$
When $\mathrm{i}=\mathrm{k}$ And y_{ii} is admittance between bus and ground or
$\mathrm{I}_{\text {Bus }}=\mathrm{Y}_{\text {Bus }} \mathrm{V}_{\text {Bus }}$ datum bus
$Y_{\text {Bus }}=$ admittance bus matrix $=\left[\begin{array}{ccc}Y_{11} & Y_{11} & \ldots . Y_{1 n} \\ Y_{21} & Y_{22} & \ldots . Y_{2 n} \\ \vdots & & \\ Y_{n 1} & Y_{n 2} & \ldots . Y_{n n}\end{array}\right]$
$Y_{\text {BUS }}$ is a symmetric matrix hence only $\frac{n^{2}-n}{2}+n=\frac{n(n+1)}{2}$ terms are to be saved.
$Y_{\text {BUS }}$ is generally a sparse matrix i.e. having very few non-zero terms.

12.2 BUS INCIDENCE MATRIX

Bus incidence matrix is formed by graph theory and by singular transformation of primitive Y_{p} matrix if A is Bus incidence matrix then.
$Y_{\text {BUS }}=A^{T} Y_{p} A$
12.2.1 Effect of Adding or Removing Extra Lines in $Y_{\text {BuS }}$

Assuming no mutual coupling between transmission lines addition of admittance y effects four element if connected between $i^{\text {th }} \& j^{\text {th }}$ bus
$\mathrm{Y}_{\text {ii }}$ new $=\mathrm{y}_{\text {ii old }}+\mathrm{y}$
Y_{ij} new $=\mathrm{y}_{\mathrm{jj} \text { old }}+\mathrm{y}$
$Y_{i j}$ new $=y_{j i \text { new }}=y_{i j \text { old }}-y$ and $y_{i i f}$ old $-y$
Addition of element between $\mathrm{i}^{\text {th }}$ bus and ground effect only
$Y_{i i}$ i.e.
$y_{\text {iinew }}=y_{\text {iiold }}+y$

CHAPTER - 13

13.1 INTRODUCTION

As we have seen that
$\mathrm{Q}_{\mathrm{r}}=\frac{\left|\mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}} \Delta \mathrm{V}$
Voltage drop $\Delta \mathrm{V}$ increases if reactive power demand is increased. Increase in $\Delta \mathrm{V}$ means that for fixed supply voltage receiving end voltage is decreased.
As we have seen in previous chapter that if loading of line is equal to surge impedance loading (SIL) than voltage remains constant over the line if loading is more than SIL than $\mathrm{V}_{\mathrm{r}}<\mathrm{V}_{\mathrm{s}}$ and for loading less than SIL, $\mathrm{V}_{\mathrm{r}}>\mathrm{V}_{\mathrm{s}}$.
Basically the voltage at any node in power system can be controlled by controlling reactive power at that node. If lagging reactive power is supplied at the node by local generator than reactive power taken through line can be maintained at specified value and thus receiving end voltage can be maintained constant.

13.2 METHOD OF VOLTAGE CONTROL

1. By Changing Excitation of Generator

Sending end voltage V_{s} can be increased by increasing excitation of alternator.

2. By Static VAR Generators or Shunt Compensation

Capacitors known as shunt capacitors are connected at the receiving end. Capacitor is supplier of reactive power.

$Q_{r}^{s}+Q_{c}=Q_{D}$; when Q_{D} varies as per load Q_{c} can be adjusted to maintain Q_{r}^{s} constant.
For capacitor bank in Δ
$\mathrm{Q}_{\mathrm{C} 3-\phi}=\frac{3\left|\mathrm{~V}_{\mathrm{r}}\right|^{2}}{\mathrm{X}_{\mathrm{c}}}$ MVAR
Where V_{r} is line voltage in kV
When capacitor bank in Y
$Q_{c 3-\phi}=\frac{\left|V_{r}\right|^{2}}{X_{C}}$ MVAR
Some times at light loads V_{r} becomes greater then V_{s} in such situations to keep V_{r} constant. Inductors are connected at receiving end to lower V_{r}
$\mathrm{Q}_{\mathrm{L} 3-\phi}=\frac{3\left|\mathrm{~V}_{\mathrm{r}}\right|^{2}}{\mathrm{x}_{\mathrm{L}}}$ MVAR for Δ

CHAPTER - 14

POWER FACTOR CORRECTION

14.1 INTRODUCTION

Almost 70% load on power system is inductive. The more the load is inductive the poorer the power factor becomes. Low power factor means high current for same amount of real power, High current causes over heating of conductors, large ohmic losers and considerable voltage drop. Hence it is desired to improve the power factor of load.
Inductive load absorbs reactive power. If required reactive power can be supplied locally to the load than power factor of such load will remain same but the power factor of current supplied will change because of less reactive power flow from supply to load.
In terms of powers the power factor angle is shown in power triangle below.

Here S is complex power, P is active or real power and Q is reactive power
$S=p+j Q$
The power factor angle $\theta=\tan ^{-1} \frac{Q}{P}$
For large value of Q the angle θ will be more for same $\mathrm{P} \Rightarrow$ Power factor $\cos \theta \downarrow$
Let us consider an inductive load demanding Q_{L} reactive power. Whole reactive power is supplied through source i.e. $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{L}}$

Now the power factor angle of source current is
$\theta=\tan ^{-1} \frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{P}_{\mathrm{L}}}$
Capacitor is generator of reactive power. If capacitor is connected across load and supplies Q_{C} reactive power than p reactive power supplied from source $Q_{S}=Q_{L}-Q_{C}$ and for same real power of load the power factor angle of source current

$$
\theta^{\prime}=\tan ^{-1} \frac{\mathrm{Q}_{\mathrm{L}}-\mathrm{Q}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{L}}}
$$

We can see $\theta^{\prime}<\theta \Rightarrow \cos \theta^{\prime}>\cos \theta$ and hence power of source current in improved.
Reactive power supplied by capacitor C at frequency f is

15.1 INTRODUCTION

Economic Load dispatch has the aspects

1. Unit commitment

This is pre dispatch issue where in it is required optimal selection of generating units out of pool of generators to meet expected load.

2. Dispatch

where in out of selected generating stations load is distributed in such a way so as reduce overall operating cost.
The cost of generation is not fixed for particular load demand but depend upon the operating constraints of the sources.

15.2 SYSTEM CONSTRAINT

15.2.1 Equality Constraint
$\Sigma \mathrm{P}_{\mathrm{G}_{\mathrm{i}}}=\Sigma \mathrm{P}_{\mathrm{D}_{\mathrm{i}}}+\mathrm{P}_{\mathrm{L}}$
$\Sigma \mathrm{Q}_{\mathrm{G}_{\mathrm{i}}}=\Sigma \mathrm{Q}_{\mathrm{D}_{\mathrm{i}}}+\mathrm{Q}_{\mathrm{L}}$
P_{L} and Q_{L} are real reactive power loss
15.2.2 Inequality Constraints

1. Generator Constraints

$\mathrm{P}_{\mathrm{i}}^{2}+\mathrm{Q}_{\mathrm{i}}^{2} \leq \mathrm{S}_{\mathrm{p}}^{2}$
Where s_{p} is prespecipied KVA loadings
The max P_{i} is limited by temperature limits and minimum P_{i} by flame instability of boiler.
$\mathrm{P}_{\mathrm{im}_{\text {min }}} \leq \mathrm{P}_{\mathrm{p}} \leq \mathrm{P}_{\mathrm{i}_{\text {max }}}$
$\operatorname{Max} \mathrm{Q}_{\mathrm{i}}$ is limited by overheating of rotor winding and $\min \mathrm{Q}_{\mathrm{i}}$ due to stability limit.
$\mathrm{Q}_{\mathrm{i}_{\text {min }}} \leq \mathrm{Q}_{\mathrm{i}} \leq \mathrm{Q}_{\mathrm{i}_{\max }}$

2. Voltage Constraints

$\left|\mathrm{V}_{\mathrm{imin}}\right| \leq \mathrm{V}_{\mathrm{i}} \leq\left|\mathrm{V}_{\mathrm{imax}}\right|$
$\delta_{\text {imin }} \leq \delta_{i} \leq \delta_{\text {max }}$

3. Running Spare Capacity Constraints

Total Generation $\mathrm{G} \geq \mathrm{P}_{\mathrm{i}}+\mathrm{Ps}_{0}$

4. Transmission Line Constraint

$\mathrm{C}_{\mathrm{i}} \leq \mathrm{C}_{\mathrm{i}_{\text {max }}}$ where c_{i} is loading capacity of line
5. Transformer tap settings also are constraints

15.3 GENERATOR OPERATING COST

Only fuel cost for thermal \& nuclear is considered. The input energy rate $\mathrm{Fi}\left(\mathrm{P}_{\mathrm{G}_{\mathrm{i}}}\right)$ in Mkcal/h or cost of fuel $C_{i}\left(P_{G_{i}}\right) R s / h$ is function of P_{G} as sown

CHAPTER - 16

SYMMETRICAL COMPONENTS \& SEQUENCE NETWORKS

16.1 FORTESCUE'S THEOREM

An unbalanced set of n phasors may be resolved into $(n-1)$ balanced n-phase system of different phase sequence and one zero sequence system. As per this theorem the unbalanced three phase may be resolved in 2 balanced 3-phase system one of which is positive sequence (Having same sequence that of unbalanced), Negative sequence (Having sequence positive to that of unbalanced) and zero sequence.

Negative sequence
$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{a} 1}+\mathrm{V}_{\mathrm{a} 2}+\mathrm{V}_{\mathrm{a} 0}$
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{b} 1}+\mathrm{V}_{\mathrm{b} 2}+\mathrm{V}_{\mathrm{b} 0}$
$\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{c} 1}+\mathrm{V}_{\mathrm{c} 2}+\mathrm{V}_{\mathrm{c} 0}$
The voltages $\mathrm{V}_{\mathrm{a} 1}, \mathrm{~V}_{\mathrm{a} 2} \& \mathrm{~V}_{\mathrm{a} 0}$ etc are called symmetrical components. The calculation of symmetrical component phasor is made in terms of ' a ' as the symmetric phase.

16.2 λ-OPERATOR

The phasor λ is an operator which when operates upon a phasor rotates it by $+120^{\circ}$ without changing magnitude.
$\lambda=1 \angle 120^{\circ}$

16.2.1 Properties of λ

1. $\lambda=1 \angle 120^{\circ}=\cos 120+j \sin 120$
$\Rightarrow \lambda=-0.5+\mathrm{j} \frac{\sqrt{3}}{2}$
2. $\lambda^{2}=1 \angle 240^{\circ}=1 \angle-120^{\circ}=-0.5-\mathrm{j} \frac{\sqrt{3}}{2}$
3. $\lambda^{3}=1 \angle 360^{\circ}=1 \angle 0^{\circ}=1$
4. $\lambda^{3}-1=0$
$\Rightarrow(\lambda-1)\left(\lambda^{2}+\lambda+1\right)=0$
$\Rightarrow \lambda^{2}+\lambda+1=0$
5. $\lambda^{*}=\lambda^{2}$
6. $\lambda^{4}=\lambda$

CHAPTER - 17

SYMMETRICAL FAULT ANALYSIS

17.1 INTRODUCTION

Generally, the power system works is balanced condition. When a 3- ϕ short circuit occurs, then currents become very high and voltages reduce, still the system remains balanced, such fault are known as symmetrical fault and are severest.

17.1.1 Types of Symmetrical Fault

Symmetrical fault are of the two type.

1. 3-phases coming together or LLL fault.
2. 3-phase touching ground simultaneously or LLLG fault.

The circuit breakers are designed to the limit of short circuit of 3- ϕ.

17.1.2 Purpose of Fault Analysis

The purpose of fault analysis includes:

1. To determine fault voltage and current at different point of power system so that rating of circuit breakers may be determined.
2. Fault analysis helps is selecting appropriate scheme for protective relaying.

Faults may cause severe effects on power system like excessive currents cause heating and rupture of insulation.
In fault analysis certain assumptions are made, which include:
(i) Series resistances of components are neglected.
(ii) Shunt elements of transformers and lines are neglected.
(iii) Normal load currents are neglected i.e. before fault the system is considered open circuited and pre fault voltage at the fault point is taken as $1 \angle 0^{\circ} \mathrm{p}$.u. This is known as flat profile.

17.2 SHORT CIRCUIT CAPACITY

Short circuit capacity of a network is defined as product of magnitude of pre fault voltage and post fault current.
$\mathrm{SCC} \triangleq \mathrm{V}^{\circ}\left|\mathrm{I}_{\mathrm{F}}\right| \mathrm{VA}$.
For three phase
$\sqrt{3} \mathrm{~V}_{1 b} \mathrm{I}_{\mathrm{F}}=\mathrm{SSC}$ in all three phase
If Z_{T} is the impedance from voltage source to fault point then
$\mathrm{Z}_{\mathrm{T}_{\mathrm{p}, \mathrm{u}}}=\frac{\mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{T}}}{\mathrm{V}_{\mathrm{b}}}$
Now short circuit current $I_{s c}=\frac{V_{b}}{Z_{T}}$
$\therefore \mathrm{Z}_{\mathrm{T}_{\mathrm{p}, \mathrm{u}}}=\frac{\mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{T}}}{\mathrm{V}_{\mathrm{b}}}=\frac{\mathrm{I}_{\mathrm{b}}}{\mathrm{I}_{\mathrm{sc}}}=\frac{\mathrm{V}_{\mathrm{b}} \mathrm{I}_{\mathrm{b}}}{\mathrm{I}_{\mathrm{sc}} \mathrm{V}_{\mathrm{b}}}$
$\mathrm{I}_{\mathrm{sc}} \mathrm{V}_{\mathrm{b}}$ is SCC, hence
S.C.C $=\frac{\mathrm{S}_{\mathrm{b}}}{\mathrm{Z}_{\mathrm{T}_{\mathrm{p} . \mathrm{W}}}}$

CHAPTER - 18

UNS YMMETRICAL FAULT ANALYSIS

18.1 INTRODUCTION

In unsymmetrical fault the system becomes unbalanced and symmetrical components are used for analysis.

18.1.1 Single Line to Ground Fault without Fault Impedance

Let fault takes place at phase ' a ' as shown above then
$\mathrm{V}_{\mathrm{a}}=0$
$\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}=0$
Sequence network equation is
$V_{a_{0}}=-I_{a_{0}} Z_{0}$
$V_{a_{1}}=E_{a}-I_{a_{1}} Z_{1}$
$\mathrm{V}_{\mathrm{a}_{2}}=-\mathrm{I}_{\mathrm{a}_{2}} \mathrm{Z}_{2}$
$\left[\begin{array}{l}\mathrm{I}_{\mathrm{a}_{0}} \\ \mathrm{I}_{\mathrm{a}_{1}} \\ \mathrm{I}_{\mathrm{a}_{2}}\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \lambda & \lambda^{2} \\ 1 & \lambda^{2} & \lambda\end{array}\right]\left[\begin{array}{c}\mathrm{I}_{\mathrm{a}} \\ 0 \\ 0\end{array}\right]$
$\Rightarrow I_{a_{0}}=\frac{I_{a}}{3}=I_{a_{1}}=I_{a_{2}}$
$\mathrm{V}_{\mathrm{a}}=0=\mathrm{V}_{\mathrm{a}_{1}}+\mathrm{V}_{\mathrm{a}_{2}}+\mathrm{V}_{\mathrm{a}_{0}}$
$\Rightarrow \mathrm{E}_{\mathrm{a}}-\mathrm{I}_{\mathrm{a}_{1}} \mathrm{Z}_{1}-\mathrm{I}_{\mathrm{a}_{2}} \mathrm{Z}_{2}-\mathrm{I}_{\mathrm{a}_{0}} \mathrm{Z}_{0}=0$
$E_{a}=I_{a_{1}}\left(Z_{1}+Z_{2}+Z_{0}\right) \Rightarrow I_{a_{1}}=\frac{E_{a}}{Z_{1}+Z_{2}+Z_{0}}$
$\mathrm{I}_{\mathrm{n}}=\mathrm{I}_{\mathrm{a}}=3 \mathrm{I}_{\mathrm{a}_{0}}$
If neutral is not grounded then $I_{a_{0}}=I_{a_{1}}=I_{a_{b}}=0$
Hence if neutral is not grounded then fault current is zero
For neutral grounded through Z_{n}

CHAPTER - 19

POWER SYSTEM PROTECTION

19.1 INTRODUCTION

1. Protective Relay

A relay is an automatic device which senses an abnormal condition in an electric circuit and closes its contacts, which in turn close the circuit breaker trip coil circuit, thereby, it opens the $C B$ and faulty part of the electric circuit is disconnected from system.

2. Pick up level

The value of actuating quantity above which relay operates.

3. Reset level

The value of actuating quantity below which relay comes in original position.

4. Operating time

The time between the instant when actuating quantity exceeds pick up value to the instant when relay contacts close.

5. Reach

The area of protection is called reach.

19.2 FUNCTIONAL CHARACTERISTIC OF RELAY

1. Reliability

Relay should operate when required.

2. Selectivity

Relay shall sense as to which part is faulty and which is not.

3. Speed

It must operate at required speed.

4. Sensitivity

It Shall be sensitive.

6. Unit system of protection

In this system protection responds to faults within its own zone and does not make note of condition elsewhere for example Protection of Generator, transformers and BUS bars.

7. Non unit system of protection

In this type selectivity is obtained by current and time grading of the relays at different location for example protection of feeders.

8. Universal torque equation

The universal torque equation for various relays is

$$
\mathrm{T}=\mathrm{K}_{1} \mathrm{I}^{2}+\mathrm{K}_{2} \mathrm{~V}^{2}+\mathrm{K}_{3} \mathrm{VI} \cos (\theta-\tau)+\mathrm{K}_{4}
$$

CHAPTER - 20

CIRCUIT BREAKERS

20.1 INTRODUCTION

During fault protective relay energizes the trip circuit of the circuit breaker causing its moving poles to separate from fixed poles. As poles separate electric arc is formed in the air gap feeding the current. For A.C. arc would extinguish at zero current and if it does not strike, the breaker opens successfully. The voltage across the breaker poles is almost constant during arcing phase and after arc is extinguished the ac system voltage appears across poles of circuit breakers.
The voltage opening across the poles when arc extinguishes is known as recovery voltage. Due to inductance and capacitance between source and fault point, transients appear at the time of interruption of current. The voltage across CB in transient period is called transient recovery voltage (TRV). The peak value of TRV may be doubled that of normal voltage, which may cause are to restrike.

20.2 TRANSIENT RECOVERY VOLTAGE

Voltage across CB is voltage across capacitor.
By Laplace transformation the network is redrawn below.

CHAPTER - 21

POWER SYSTEM STABILITY

21.1 INTRODUCTION

Power system stability is the ability of power system to return to normal operating condition after disturbance or in other words ability to remain in synchronism.

1. Steady State Stability

The maximum load which can be supplied when loading is increased gradually is the steady state stability of the system.
2. Dynamic Stability

Dynamic stability is the stability due to small disturbances, amplitude of oscillation is less and die out quickly No fear of loss of synchronism.

3. Transient Stability

Transient stability is under large sudden disturbance like faults. Due to severe disturbance there is fear of loss of synchronism if disturbance not resolved in very short time i.e. with 1 or 2 second.

21.2 DYNAMICS OF SYNCHRONOUS MACHINE

Kinetic energy of rotor
K.E. $=\frac{1}{2} \mathrm{~J} \omega_{\mathrm{sm}}^{2}$
$\omega_{\text {sm }}$ is synchronous speed
$\omega_{\mathrm{s}}=\frac{\mathrm{P}}{2} \omega_{\mathrm{sm}}$ where ω_{s} is speed in elect rad/sec
$\mathrm{P}=$ number of poles in the machine
$K . E=\frac{1}{2}\left(J\left(\frac{2}{P}\right)^{2} \omega_{\mathrm{s}}\right) \omega_{\mathrm{s}}$
$=\frac{1}{2} \mathrm{M} \omega_{\mathrm{S}}$
Where $\mathrm{M}=\mathrm{J}\left(\frac{2}{P}\right)^{2} \omega_{\mathrm{s}}=$ moment of inertia in J-s/ elect read
Now inertial constant H such that
$\mathrm{K} . \mathrm{E}=\mathrm{GH}=\frac{1}{2} \mathrm{MW}_{\mathrm{s}}$
Where G is Machine rating in VA
$\mathrm{H}=$ inertia constant in J / VA or $\mathrm{W}-\mathrm{s} / \mathrm{VA}$
$\mathrm{M}=\frac{2 \mathrm{GH}}{\omega_{\mathrm{s}}}=\frac{\mathrm{GH}}{\pi \mathrm{f}} \mathrm{J}-\mathrm{s} /$ elect rad
$\mathrm{M}=\frac{\mathrm{GH}}{180 \mathrm{f}} \mathrm{J}-\mathrm{s} /$ elect degree

- GATE QUESTIONS

1. The figures shows the single line diagram of a power system with a double circuit transmission line. The expression for electrical power is $1.5 \sin \delta$, where δ is the rotor angle. The system is operating at the stable equilibrium point with mechanical power equal to 1 pu . If one of the transmission line circuits is removed, the maximum value of δ, as the rotor swings is 1.221 radian. If the expression for electrical power with one transmission line circuit removed is $\mathrm{P}_{\text {max }} \sin \delta$, the value of $\mathrm{P}_{\max }$, in pu is \qquad .

2. The single line diagram of a balanced power system is shown in the figure. The voltage magnitude at the generator internal bus is constant and 1.0 p.u. The p.u. reactances of different components in the system are also shown in the figure. The infinite bus voltage magnitude is 1.0 p.u. A three phase fault occurs at the middle of line 2 .
The ratio of the maximum real power than can be transferred during the pre-fault condition to the maximum real power that can be transferred under the faulted condition is \qquad

[GATE - 2016]
3. The synchronous generator shown in the figure is supplying active power to an infinite bus via short, lossless transmission lines, and is initially in steady state. The mechanical power input to generator and the voltage magnitude E are constant. if one line is tripped at time t_{1} by
opening circuit breakers at the two ends (although there is no fault), then it is seen that the generator undergoes a stable transient. Which one of the following waveforms of the rotor angle δ shows transient correctly?

[GATE - 2015]
(a)

(b)

(c)

(d)

4. A sustained three phase fault occurs in the power shown in the figure. The current and voltage phasor during the fault (on a common reference), after the natural transients have died

CHAPTER - 22

LOAD FREQUENCY CONTROL

22.1 INTRODUCTION

Due to following reasons system frequency shall remain in striet limits.

1. Speed of A.C. motors is directly related to frequency.
2. The electric clocks are driven by synchronous motors.
3. For frequency outside of range turbine blades may damage.
4. For low frequency the flux required in core increases in transformers and core may saturate.
5. In thermal power plant with reduced frequency the blast of fan decreases \Rightarrow generation \downarrow and this again reduced blast of fan which becomes a cumulative process and the power system may shutdown consequently.

22.1.1 With Increase in Load

$\frac{\mathrm{Md}^{2} \delta}{\mathrm{dt}^{2}}=\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{e}}$
If $P_{e} \uparrow$ then acceleration \downarrow and speed reduce thus frequency \downarrow. This is sensed by load frequency controller and steam input is increased by valve control mechanism thus meeting increased load. The control of system frequency and load depends on Governer of prime movers.

Governor Characteristic
Governor Characteristic is also called drop characteristic or droop characteristic.

22.2 LOAD-FREQUENCY PROBLEM

Sol. 1. (a)

Sol. 2. (a)

Sol. 3. (b)
Using load frequency controller, the change in frequency and the tie-line real power are sensed which is a measure of the change in rotor angle θ. Hence, Option (b) is correct.

Sol. 4. (b)
$\Delta f_{p u}=-R \Delta P_{p u}$
$=-\frac{0.01}{50} \mathrm{R}=6 \%=0.06=-\frac{0.01}{50}=-0.06 \times \Delta \mathrm{P}_{\mathrm{pu}}$
$\Delta \mathrm{P}_{\mathrm{pu}}=3.33 \times 10^{-3} \mathrm{pu}$
$\Delta \mathrm{P}=120 \times 3.33 \times 10^{-3}$
$=0.4 \mathrm{MW}$
Hence, option (b) is correct.
Sol. 5. (d)
Sol. 6. (d)

Sol. 7. (b)
Unit of frequency bias coefficient is $\mathrm{MW} / \mathrm{Hz}$.
Sol. 8. (d)
Time constant of automatic load frequency control is about 20s.

Sol. 9. (d)

Sol. 10.(b)
$X y+y z=600 M W, \frac{x y}{50-f}=\frac{200}{2}$
$\therefore \mathrm{xy}=100(50-\mathrm{f})$
$\frac{y z}{(50-f)}=\frac{400}{2.5}=160$
$\therefore \mathrm{yz}=160(50-\mathrm{f})$
(ii)

From equation (i) and (ii),
$X y+y z=(50-f) 260=600$
$\Rightarrow \mathrm{f}=47.69 \mathrm{~Hz}$

Sol. 11. (a)
$\Delta P_{D}=-\left(D+\frac{1}{R}\right) \Delta f$
$\therefore \mathrm{D}+\frac{1}{\mathrm{R}}=2+\frac{1}{0.025}=42 \mathrm{MW} / \mathrm{Hz}$
Where, Δf is change in frequency and ΔP_{D} is change in load demand.

[^0]: (a) A zero and a pole
 (b) A zero and a zero
 (c) A pole and a pole
 (d) A pole and a zero

